MG3700A Vector Signal Generator Operation Manual (Standard Waveform Pattern)

14th Edition

- For safety and warning information, please read this manual before attempting to use the equipment.
- Additional safety and warning information is provided within the MG3700A Vector Signal Generator Operation Manual (Mainframe). Please also refer to this document before using the equipment.
- Keep this manual with the equipment.

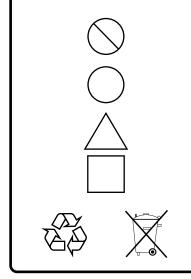
ANRITSU CORPORATION

Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Corporation uses the following safety symbols to indicate safety-related information. Ensure that you clearly understand the meanings of the symbols BEFORE using the equipment. Some or all of the following symbols may be used on all Anritsu equipment. In addition, there may be other labels attached to products that are not shown in the diagrams in this manual.

Symbols used in manual

This indicates a very dangerous procedure that could result in serious injury or death if not performed properly.


This indicates a hazardous procedure that could result in serious injury or death if not performed properly.

This indicates a hazardous procedure or danger that could result in light-to-severe injury, or loss related to equipment malfunction, if proper precautions are not taken.

Safety Symbols Used on Equipment and in Manual

The following safety symbols are used inside or on the equipment near operation locations to provide information about safety items and operation precautions. Ensure that you clearly understand the meanings of the symbols and take the necessary precautions BEFORE using the equipment.

This indicates a prohibited operation. The prohibited operation is indicated symbolically in or near the barred circle.

This indicates an obligatory safety precaution. The obligatory operation is indicated symbolically in or near the circle.

This indicates a warning or caution. The contents are indicated symbolically in or near the triangle.

This indicates a note. The contents are described in the box.

These indicate that the marked part should be recycled.

MG3700A Vector Signal Generator Operation Manual (Standard Waveform Pattern)

1 November 2004 (First Edition)

26 July 2013 (14th Edition)

Copyright © 2004-2013, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the publisher.

The contents of this manual may be changed without prior notice. Printed in Japan

Equipment Certificate

Anritsu Corporation guarantees that this equipment was inspected at shipment and meets the published specifications.

Anritsu Warranty

- During the warranty period, Anritsu Corporation will repair or exchange this software free-of-charge if it proves defective when used as described in the operation manual.
- The warranty period is 6 months from the purchase date.
- The warranty period after repair or exchange will remain 6 months from the original purchase date, or 30 days from the date of repair or exchange, depending on whichever is longer.
- This warranty does not cover damage to this software caused by Acts of God, natural disasters, and misuse or mishandling by the customer.

In addition, this warranty is valid only for the original equipment purchaser. It is not transferable if the equipment is resold.

Anritsu Corporation shall assume no liability for injury or financial loss of the customer due to the use of or a failure to be able to use this equipment.

Anritsu Corporation Contact

In the event that this equipment malfunctions, contact an Anritsu Service and Sales office. Contact information can be found on the last page of the printed version of this manual, and is available in a separate file on the CD version.

Notes On Export Management

This product and its manuals may require an Export License/Approval by the Government of the product's country of origin for re-export from your country.

Before re-exporting the product or manuals, please contact us to confirm whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals need to be broken/shredded so as not to be unlawfully used for military purpose.

Trademark and Registered Trademark

IQproducer[™] is a registered trademark of Anritsu Corporation.

Software End-User License Agreement (EULA)

Please read this Software End-User License Agreement (hereafter this EULA) carefully before using (includes executing, copying, registering, etc.) this software (includes programs, databases, scenarios, etc., used to operate, set, etc., Anritsu electronic equipment). By reading this EULA and using this software, you are agreeing to be bound by the terms of its contents and Anritsu Corporation (hereafter Anritsu) hereby grants you the right to use this Software with the Anritsu-specified equipment (hereafter Equipment) for the purposes set out in this EULA.

1. Grant of License and Limitations

- 1. Regardless of whether this Software was purchased from or provided free-of-charge by Anritsu, you agree not to rent, lease, lend, or otherwise distribute this Software to third parties and further agree not to disassemble, recompile, reverse engineer, modify, or create derivative works of this Software.
- 2. You may make one copy of this Software for backup purposes only.
- 3. You are not permitted to reverse engineer this software.
- 4. This EULA allows you to install one copy of this Software on one piece of Equipment.

2. Disclaimers

To the extent not prohibited by law, in no event shall Anritsu be liable for personal injury, or any incidental, special, indirect or consequential damages whatsoever, including, without limitation, damages for loss of profits, loss of data, business interruption or any other commercial damages or losses, arising out of or related to your use or inability to use this Software.

3. Limitation of Liability

- a. If a fault (bug) is discovered in this Software, preventing operation as described in the operation manual or specifications whether or not the customer uses this software as described in the manual, Anritsu shall at its own discretion, fix the bug, or exchange the software, or suggest a workaround, free-of-charge. However, notwithstanding the above, the following items shall be excluded from repair and warranty.
 - i) If this Software is deemed to be used for purposes not described in the operation manual or specifications.
 - ii) If this Software is used in conjunction with other non-Anritsu-approved software.
 - iii) Recovery of lost or damaged data.
 - iv) If this Software or the Equipment has been modified, repaired, or otherwise altered without Anritsu's prior approval.
 - v) For any other reasons out of Anritsu's direct control and responsibility, such as but not limited to, natural disasters, software virus infections, etc.
- b. Expenses incurred for transport, hotel, daily allowance, etc., for on-site repairs by Anritsu engineers necessitated by the above faults shall be borne by you.
- c. The warranty period for faults listed in article 3a above covered by this EULA shall be either 6 months from the date of purchase of this Software or 30 days after the date of repair, whichever is longer.

4. Export Restrictions

You may not use or otherwise export or re-export directly or indirectly this Software except as authorized by Japanese and United States law. In particular, this software may not be exported or re-exported (a) into any Japanese or US embargoed countries or (b) to anyone on the Japanese or US Treasury Department's list of Specially Designated Nationals or the US Department of Commerce Denied Persons List or Entity List. By using this Software, you warrant that you are not located in any such country or on any such list. You also agree that you will not use this Software for any purposes prohibited by Japanese and US law, including, without limitation, the development, design and manufacture or production of missiles or nuclear, chemical or biological weapons of mass destruction.

5. Termination

Anritsu shall deem this EULA terminated if you violate any conditions described herein. This EULA shall also be terminated if the conditions herein cannot be continued for any good reason, such as violation of copyrights, patents, or other laws and ordinances.

6. Reparations

If Anritsu suffers any loss, financial or otherwise, due to your violation of the terms of this EULA, Anritsu shall have the right to seek proportional damages from you.

7. Responsibility after Termination

Upon termination of this EULA in accordance with item 5, you shall cease all use of this Software immediately and shall as directed by Anritsu either destroy or return this Software and any backup copies, full or partial, to Anritsu.

8. Dispute Resolution

If matters of dispute or items not covered by this EULA arise, they shall be resolved by negotiations in good faith between you and Anritsu.

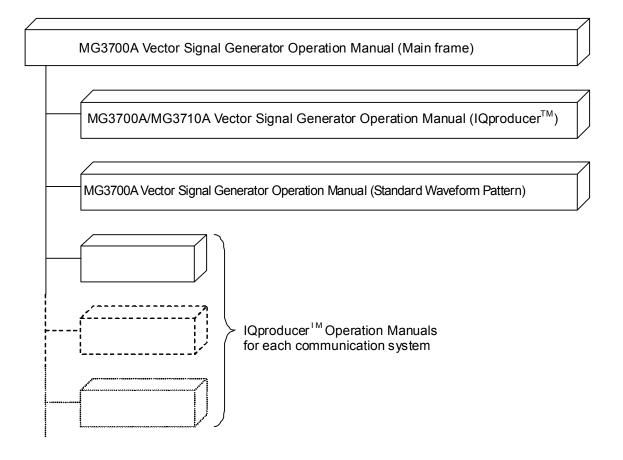
9. Court of Jurisdiction

This EULA shall be interpreted in accordance with Japanese law and any disputes that cannot be resolved by negotiation described in Article 8 shall be settled by the Japanese courts.

Cautions against computer virus infection

Copying files and data
Only files that have been provided directly from Anritsu or generated
using Anritsu equipment should be copied to the instrument.
All other required files should be transferred by means of USB or
CompactFlash media after undergoing a thorough virus check.

Adding software
Do not download or install software that has not been specifically
recommended or licensed by Anritsu.


Network connections
Ensure that the network has sufficient anti-virus security protection in
place.

About This Manual

Composition of Operation Manuals

The operation manuals for the MG3700A Vector Signal Generator are comprised as shown in the figure below.

Details on the mainframe and the software application IQproducerTM are provided in each operation manual separately. Read them when needed in addition to this manual.

Scope of This Manual

This manual mainly describes how to use the standard waveform patterns that can be used in the arbitrary waveform generators integrated in the MG3700A Vector Signal Generator, as well as the detailed specifications of each waveform pattern. The detailed information about the standard waveform pattern is described in Section 3 "Details of Standard Waveform Pattern." The detailed operation method of the standard waveform pattern in the MG3700A Vector Signal Generator is described in the MG3700A Operation Manual (Mainframe). Read it in addition to this manual.

Table of Contents

About This Manual		
Section 1	Outline	1-1

	••••		
1.1	Outline	of Product	1-2

Section 2How to Use Standard WaveformPattern2-12.1How to Use Standard Waveform Pattern2-22.2Configuration of Standard Waveform Pattern2-4

	r dokago	
2.3	Output Level Range of Standard Waveform Pattern	2-5

Section 3 Details of Standard Waveform

	Pattern	3-1
3.1	W-CDMA Waveform Pattern	3-3
3.2	PDC Waveform Pattern	3-58
3.3	PDC PACKET Waveform Pattern	3-62
3.4	PHS Waveform Pattern	3-65
3.5	GSM Waveform Pattern	3-69
3.6	CDMA2000 1X Waveform Pattern	3-74
3.7	CDMA2000 1xEV-DO Waveform Pattern	3-91
3.8	WLAN Waveform Pattern	3-103
3.9	AWGN Waveform Pattern	3-110
3.10	Digital Broadcast Waveform Pattern	3-111
3.11	Bluetooth [®] Waveform Pattern	3-117
3.12	GPS Waveform Pattern	3-128

Index	Index-1
-------	---------

Section 1 Outline

This section provides an outline of the standard waveform pattern for the MG3700A Vector Signal Generator.

1.1 Outline of Product 1-2

1.1 Outline of Product

The standard waveform pattern for the MG3700A Vector Signal Generator (hereafter referred to as "standard waveform pattern") consists of waveform patterns (see Note) that are used in a wide range of applications from research and development to manufacturing of the systems, devices, and equipment in the field of digital mobile communications.

The standard waveform pattern can be used in the MG3700A Vector Signal Generator (hereafter referred to as "MG3700A") that integrates an arbitrary waveform generator.

Note:

The waveform pattern described here indicates arbitrary waveform data used for supporting various radio communication systems that can be used by the arbitrary waveform generator integrated in the MG3700A.

The waveform pattern consists of two files: arbitrary waveform file and waveform information file. The arbitrary waveform file is a binary-format file with the extension ".wvd". The waveform information file is a text-format file with the extension ".wvi", used to control arbitrary waveform data and set the hardware for waveform data output.

Waveform patterns that use two memories as shown below can be operated easily by using a combination file that defines a combination of two waveform patterns to be loaded from memories A and B, and sets the output level for memories.

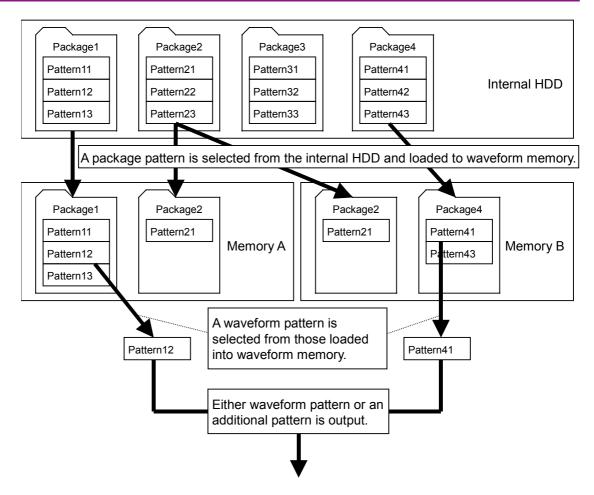
- A waveform pattern that uses two memories to output one signal, such as a W-CDMA downlink desired signal
- A waveform pattern that is generated by adding two signals, such as a desired wave used for receiver evaluation and an interference signal or AWGN, using the baseband

Section 2 How to Use Standard Waveform Pattern

This section describes how to use the standard waveform pattern and the configuration of the standard waveform pattern package.

2.1	How to Use Standard Waveform Pattern	2-2
-----	--------------------------------------	-----

2.2	Configuration of Standard Waveform Pattern		
	Package	2-4	
2.3	Output Level Range of Standard Waveform Pattern.	2-5	


2.1 How to Use Standard Waveform Pattern

The standard waveform pattern is shipped being stored in the internal hard disk of the MG3700A.

The waveform pattern stored in the internal hard disk is reproduced by the arbitrary waveform generator integrated in the MG3700A, and used to perform vector modulation. The waveform patterns are classified by communication type and stored in a folder. This folder is called as a package, and the standard waveform patterns classified by communication type are stored in each package with the corresponding communication system name. When reproducing a waveform pattern, it is necessary first to load the package pattern stored in the internal hard disk to a waveform memory in the MG3700A. The MG3700A has two waveform memories A and B that have the I/Q 2-channel configuration. Waveform patterns are loaded to either or both of these two waveform memories.

Then, select a waveform pattern to be output from the patterns loaded into the waveform memory. Only one waveform pattern can be selected from each memory. A waveform pattern selected from the waveform memory A or B, or an additional waveform generated by adding two waveform patterns selected from both waveform memories A and B is output.

2.1 How to Use Standard Waveform Pattern

Refer to Section 3.5.2 "Using waveform pattern for modulation" in the MG3700A Operation Manual (Mainframe) for details of waveform pattern selection.

2.2 Configuration of Standard Waveform Pattern Package

The standard waveform patterns are stored in the internal hard disk of the MG3700A, classified into the packages with the corresponding communication system name.

Package name	Contents		
W-CDMA_A (UE Rx test)	Waveform patterns for 3GPP W-CDMA, UE Rx test used in waveform memory A		
W-CDMA_B (UE Rx test)	Waveform patterns for 3GPP W-CDMA, UE Rx test used in waveform memory B		
W-CDMA (UE Rx test)	A combination file that defines a combination of two waveform patterns W-CDMA_A (UE Rx Test) and W-CDMA_B (UE Rx Test)		
W-CDMA (UE Tx test)	Waveform patterns for 3GPP W-CDMA, UE Tx test		
W-CDMA (BS Rx test)	Waveform patterns for 3GPP W-CDMA, BS Rx test		
W-CDMA_CMB	A combination file that defines a combination of a W-CDMA desired wave and an interference signal or AWGN		
W-CDMA (BS Tx test)	Waveform patterns for 3GPP W-CDMA, BS Tx test		
PDC	Various waveform patterns for PDC		
PDC_CMB	A combination file that defines a combination of a PCC desired wave and an interference signal		
PHS	Various waveform patterns for PHS		
PHS_CMB	A combination file that defines a combination of a PHS desired wave and an interference signal		
GSM	Various waveform patterns for GSM		
CDMA2000	Various waveform patterns for CDMA2000 1X		
CDMA2000_1xEV-DO	Various waveform patterns for CDMA2000 1xEV-DO		
WLAN	Various waveform patterns for IEEE802. 11a/b/g		
AWGN	AWGN waveform patterns used in W-CDMA, CDMA2000		
Digital_Broadcast	Waveform patterns for the Digital Broadcast		
Bluetooth	Various waveform patterns for <i>Bluetooth</i>		
GPS	Various waveform patterns for GPS		

Table 2.2-1 List of packages

2.3 Output Level Range of Standard Waveform Pattern

The guaranteed range of level error $(\pm 0.2 \text{ dB})$ between the MG3700A RF output levels in vector modulation and CW modes, varies depending on the used standard waveform pattern.

System name	Guaranteed level range
W-CDMA	50 MHz≤f≤3 GHz: ≤−1 dBm
CDMA2000 1x	3 GHz <f≤6 dbm<="" ghz:="" td="" ≤−4=""></f≤6>
CDMA2000 1xEV-DO	
WLAN	When Opt. 002 (Mechanical attenuator) installed:
AWGN	50 MHz≤f≤3 GHz: ≤+4 dBm
Digital Broadcast	3 GHz <f≤6 dbm<="" ghz:="" td="" ≤+1=""></f≤6>
PDC	50 MHz≤f≤3 GHz: ≤+2 dBm
PHS	3 GHz <f≤6 dbm<="" ghz:="" td="" ≤−1=""></f≤6>
GSM	
Bluetooth	When Opt. 002 (Mechanical attenuator) installed:
GPS	50 MHz≤f≤3 GHz: ≤+7 dBm
	3 GHz <f≤6 dbm<="" ghz:="" td="" ≤+4=""></f≤6>

Table 2.3-1 Guaranteed level range of RF output level accuracy

The level setting range (in which the MG3700A RF output signal distortion characteristics (which effects the ACLR characteristics etc.) is stable to be used) varies depending on the used standard waveform pattern, as shown below. When the level is more than the reference level shown in Table 2.3-2, the distortion characteristics becomes worse.

Table 2.3-2 Distortion-characteristics reference level of RF output signal

System name	Reference level
W-CDMA	-4 dBm
CDMA2000 1x	
CDMA2000 1xEV-DO	When Opt. 002 (Mechanical attenuator) installed:
WLAN	0 dBm
AWGN	
Digital Broadcast	
PDC	-1 dBm
PHS	
GSM	When Opt. 002 (Mechanical attenuator) installed:
Bluetooth	+3 dBm
GPS	

This section describes each standard waveform pattern in detail.

3.1	W-CD	MA Waveform Pattern3-3
	3.1.1	UL_RMCxxxkbps
	3.1.2	UL_AMR_TFCSx/UL_ISDN/UL_64kbps
		_Packet
	3.1.3	UL_Interferer 3-27
	3.1.4	DL_RMCxxxkbps3-28
	3.1.5	DL_AMR_TFCSx/DL_ISDN/DL_384kbps
		_Packet3-38
	3.1.6	DL_Interferer 3-44
	3.1.7	TestModel_x_xxDPCH 3-46
	3.1.8	TestModel_5_xDPCH3-52
	3.1.9	TestModel_5_xHSPDSCH 3-52
		TestModel_6_xHSPDSCH 3-55
3.2	PDC V	Vaveform Pattern3-58
	3.2.1	Frame configuration3-60
	3.2.2	Slot configuration 3-61
3.3	PDC F	PACKET Waveform Pattern
	3.3.1	Frame configuration 3-63
	3.3.2	Slot configuration 3-64
3.4	PHS V	Vaveform Pattern3-65
	3.4.1	Frame configuration 3-67
	3.4.2	Slot configuration 3-68
3.5	GSM \	Naveform Pattern
	3.5.1	Details of each pattern3-70
	3.5.2	Frame configuration 3-71
	3.5.3	Slot configuration
3.6	CDMA	2000 1X Waveform Pattern 3-74
	3.6.1	1xRTT Reverse RC1 (RVS_RC1_FCH) 3-75
	3.6.2	1xRTT Reverse RC2 (RVS_RC2_FCH) 3-77
	3.6.3	1xRTT Reverse RC3 (1) (RVS_RC3_FCH) 3-79
	3.6.4	1xRTT Reverse RC3 (2)
		(RVS_RC3_FCH_SCH) 3-81
	3.6.5	1xRTT Reverse RC3 (3)
		(RVS_RC3_DCCH) 3-83
	3.6.6	1xRTT Reverse RC4 (RVS_RC4_FCH) 3-85
	3.6.7	1xRTT Forward RC1, 2
		(FWD_RC1-2 9channel)
	3.6.8	1xRTT Forward RC3, 4, 5
		(FWD_RC3-5 9channel)3-89
3.7	CDMA	2000 1xEV-DO Waveform Pattern

Section 3 Details of Standard Waveform Pattern

	3.7.1	1xEV-DO forward (excluding FWD_Idle)	3-94
	3.7.2	1xEV-DO reverse	3-99
	3.7.3	1xEV-DO forward idle slot	3-102
3.8	WLAN	Waveform Pattern	3-103
	3.8.1	IEEE802.11a	3-106
	3.8.2	IEEE802.11b	3-108
	3.8.3	IEEE802.11g	3-109
3.9	AWGN	Waveform Pattern	3-110
3.10	Digital	Broadcast Waveform Pattern	3-111
	3.10.1	Frame configuration	3-114
3.11	Blueto	oth [®] Waveform Pattern	3-117
	3.11.1	Packet configuration for Basic Rate (BR)	3-120
	3.11.2	Packet configuration for Enhanced Data R	late
		(EDR)	3-123
	3.11.3	Packet configuration for BLE	3-125
	3.11.4	Dirty Transmitter Signal	3-127
3.12	GPS V	Vaveform Pattern	3-128
	3.12.1	Waveform format	3-130

3.1 W-CDMA Waveform Pattern

Table 3.1-1 lists the W-CDMA waveform patterns.

Waveform Pattern Name	UL/DL	Channel Configuration	3GPP Reference Standard	Main Application
UL_RMC_12_2kbps	UL	DPCCH, DPDCH	TS25.141 A.2	BS RX test
UL_RMC_12_2kbps_ACS (*1)	UL	DPCCH, DPDCH	TS25.141 A.2	BS RX test
UL_RMC_64kbps (*1)	UL	DPCCH, DPDCH	TS25.141 A.3	BS RX test
UL_RMC_144kbps (*1)	UL	DPCCH, DPDCH	TS25.141 A.4	BS RX test
UL_RMC_384kbps (*1)	UL	DPCCH, DPDCH	TS25.141 A.5	BS RX test
UL_AMR_TFCS1	UL	DPCCH, DPDCH	TS25.944 4.1.2	BS RX test
UL_AMR_TFCS2	UL	DPCCH, DPDCH	TS25.944 4.1.2	BS RX test
UL_AMR_TFCS3	UL	DPCCH, DPDCH	TS25.944 4.1.2	BS RX test
UL_ISDN (*1)	UL	DPCCH, DPDCH	TS25.944 4.1.2	BS RX test
UL_64kbps_Packet	UL	DPCCH, DPDCH	TS25.944 4.1.2	BS RX test
UL_Interferer	UL	DPCCH, DPDCH	TS25.141 I	BS RX test
UL_Interferer_ov3 (*2)	UL	DPCCH, DPDCH	TS25.141 I	BS RX test
P-CCPCH (*2)	DL	Р-ССРСН	TS25.944 4.1.1 (*3)	UE RX test
DL_RMC_12_2kbps_RX (*2)	DL	P-CPICH, SCH, PICH, DPCH	TS25.101 A.3.1 TS25.101 C.3.1	UE RX test
DL_RMC_12_2kbps_ACS (*1)	DL	P-CPICH, P-CCPCH, SCH, PICH, DPCH	TS25.101 A.3.1 TS25.101 C.3.1	UE RX test
DL_RMC_12_2kbps (*2)	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.1 TS25.101 C.3.2	UE RX test
DL_RMC_12_2kbps_MIL (*2)	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.1 TS25.101 C.3.1	UE RX test
DL_RMC_64kbps (*2)	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.2 TS25.101 C.3.2	UE RX test
DL_RMC_144kbps (*2)	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.3 TS25.101 C.3.2	UE RX test
DL_RMC_384kbps (*2)	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.4 TS25.101 C.3.2	UE RX test
DL_AMR_TFCS1 (*2)	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.944 4.1.1.3 TS25.101 C.3.2	UE RX test
DL_AMR_TFCS2 (*2)	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.944 4.1.1.3 TS25.101 C.3.2	UE RX test
DL_AMR_TFCS3 (*2)	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.944 4.1.1.3 TS25.101 C.3.2	UE RX test
DL_ISDN (*2)	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.944 4.1.1.3 TS25.101 C.3.2	UE RX test
DL_384kbps_Packet (*2)	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.944 4.1.1.3 TS25.101 C.3.2	UE RX test

Table 3.1-1 List of W-CDMA waveform patterns (1/3)

Section 3 Details of Standard Waveform Pattern

Table 3.1-1 List of W-CDMA waveform patterns (2/3)				
Waveform Pattern Name	UL/DL	Channel Configuration	3GPP Reference Standard	Main Application
DL_Interferer	DL	P-CPICH, P-CCPCH, SCH, PICH, OCNS	TS25.101 C.4	UE RX test
DL_Interferer_ov3 (*6)	DL	P-CPICH, P-CCPCH, SCH, PICH, OCNS	TS25.101 C.4	UE RX test
TestModel_1_4DPCH	DL	P-CPICH,P-CCPCH,SCH ,PICH, S-CCPCH,4 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_1_8DPCH	DL	P-CPICH,P-CCPCH,SCH ,PICH, S-CCPCH,8 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_1_16DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 16 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_1_32DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 32 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_1_64DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_2	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 3 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_3_4DPCH	DL	P-CPICH,P-CCPCH,SCH ,PICH, S-CCPCH,4 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_3_8DPCH	DL	P-CPICH,P-CCPCH,SCH ,PICH, S-CCPCH,8 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_3_16DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 16 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_3_32DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 32 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_4	DL	P-CCPCH, SCH	TS25.141 V11.4.0	BS TX device test
TestModel_4_CPICH	DL	P-CPICH,P-CCPCH,SCH	TS25.141 V11.4.0	BS TX device test
TestModel_ 1_64DPCHx2 (*4)	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_ 1_64x2_10M ($^{*4, *5}$)	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX device test

 Table 3.1-1
 List of W-CDMA waveform patterns (2/3)

3.1 W-CDMA Waveform Pattern

Waveform Pattern Name	UL/DL	Channel Configuration	3GPP Reference Standard	Main Application
TestModel_ 1_64x2_15M ($^{*4, *5}$)	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_ 1_64DPCHx3 (*4)	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_ 1_64DPCHx4 (*4)	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX device test
TestModel_5_4DPCH	DL	P-CPICH,P-CCPCH,SCH ,PICH, S-CCPCH, 4 DPCH,HS-SCCH, 4 HS-PDSCH	TS25.141 V11.4.0	BS TX device test
TestModel_5_2HSPDSCH_	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 6 DPCH, HS-SCCH, 2 HS-PDSCH	TS25.141 V11.4.0	BS TX device test
TestModel_5_4HSPDSCH_	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 14 DPCH, HS-SCCH, 4 HS-PDSCH	TS25.141 V11.4.0	BS TX device test
TestModel_5_8HSPDSCH_	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 30 DPCH, HS-SCCH, 8 HS-PDSCH	TS25.141 V11.4.0	BS TX device test
TestModel_6_4HSPDSCH	DL	P-CPICH,P-CCPCH,SCH ,PICH, S-CCPCH,14 DPCH,HS-SCCH, 4 HS-PDSCH	TS25.141 V11.4.0	BS TX device test
TestModel_6_8HSPDSCH_	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 30 DPCH, HS-SCCH, 8 HS-PDSCH	TS25.141 V11.4.0	BS TX device test
DL_CPICH	DL	P-CPICH	-	BS TX device test
UL_RMC_12_2kbps_TX	UL	DPCCH, DPDCH	TS25.101 A.2.1	UE TX device test

Table 3.1-1 List of W-CDMA waveform patterns (3/3)

*1: For UL_RMC_12_2kbps_ACS, UL_RMC_64kbps, UL_RMC_144kbps, UL_RMC_384kbps, UL_ISDN and DL_RMC_12_2kbps_ACS, addition of standard waveform pattern's AGWN is enabled only when the Option 021/121 ARB Memory Expansion 512Msamples is installed.

Section 3 Details of Standard Waveform Pattern

- *2: Since waveform patterns (excluding DL_RMC12_2kbps_ACS) for the UE RX test do not include P-CCPCH, they must be used in combination with a P-CCPCH waveform pattern. Refer Table 3.1-2 for the combination files in which these combinations are defined.
- *3: An 11-bit SFN is added to the head of each BCH Transport block.
- *4: x2, x3, and x4 indicate the number of multicarriers 2, 3, and 4, respectively.
- *5: 10M and 15M indicate the frequency spacing values of the multi-carrier.
- *6: Select a waveform pattern generated using the W-CDMA waveform pattern generation function of the MG3700A IQproducer or by the MX370101A HSDPA IQproducer (only the waveform patterns that can be configured using only one memory) for memory A on the MG3700A while selecting this pattern for memory B to output a signal that is generated by adding the desired signal and the interference signal using baseband.

For a downlink W-CDMA desired signal, which is configured using two memories, transfer and selection of waveform patterns can be operated easily by selecting a combination file listed in Table 3.1-2 below when the MG3700A is in the Defined mode.

Combination File Name	Comment
DL_CMB_RMC_12_2k_RX	Downlink Reference Measurement Channel (12.2 kbps) for RX test except "Maximum Input Level" Scrambling Code = 80h DTCH information data = PN9
DL_CMB_RMC_12_2k	Downlink Reference Measurement Channel (12.2 kbps) for Performance test Scrambling Code = 80h DTCH information data = PN9
DL_CMB_RMC_12_2k_MIL	Downlink Reference Measurement Channel (12.2 kbps) for "Maximum Input Level" Scrambling Code = 80h DTCH information data = PN9
DL_CMB_RMC_64k	Downlink Reference Measurement Channel (64 kbps) for Performance test Scrambling Code = 80h DTCH information data = PN9
DL_CMB_RMC_144k	Downlink Reference Measurement Channel (144 kbps) for Performance test Scrambling Code = 80h DTCH information data = PN9
DL_CMB_RMC_384k	Downlink Reference Measurement Channel (384 kbps) for Performance test Scrambling Code = 80h DTCH information data = PN9
DL_CMB_AMR_TFCS1	Downlink AMR for TFCS1 Scrambling Code = 80h DTCH information data = PN9
DL_CMB_AMR_TFCS2	Downlink AMR for TFCS2 Scrambling Code = 80h DTCH information data = PN9
DL_CMB_AMR_TFCS3	Downlink AMR for TFCS3 Scrambling Code = 80h DTCH information data = PN9
DL_CMB_ISDN	Downlink ISDN Scrambling Code = 80h DTCH information data = PN9
DL_CMB_384k_Packet	Downlink 384 kbps Packet Scrambling Code = 80h DTCH information data = PN9

Table 3.1-2 List of combination files for W-CDMA desired signal

Transfer and selection of an additional waveform pattern that is generated by adding two signals, such as a desired signal + an interference signal or a desired signal + AWGN, and using two memories, can be operated easily by selecting a combination file listed in Table 3.1-3 below when the MG3700A is in the Defined mode.

Although combinations of uplink signals for BS reception evaluation are provided as standard, it is also possible to combine downlink signals by using the W-CDMA IQproducer and its Combination File Edit function. In this event, it is necessary to set the scrambling code and channelization code in accordance with the actual operating conditions.

Table 3.1-3 List of combination files for W-CDMA BS reception test

Combination File Name	Comment
WCDMA_BS_ACS	For TS25.141 Adjacent Channel Selectivity test
	UL_RMC12_2kbps + UL_Interferer (5 MHz offset)
WCDMA_BS_DRange	For TS25.141 Dynamic Range test UL_RMC12_2kbps + AWGN

3.1.1 UL_RMCxxxkbps

These waveform patterns execute channel coding, division and spreading to physical channels, and power setting conforming to the UL Reference Measurement Channel standard described in 3GPP TS 25.141 Annex A.

Table 3.1.1-1 lists the parameters commonly used by each waveform pattern. When a waveform pattern is output, a marker signal shown in Table 3.1.1-1 is output from the AUX I/O connector on the rear panel of the MG3700A.

Parameter	Setting Value
Scrambling Code	0н
DTCH Information Data	PN9
DCCH information Data	All 0
Over sampling rate	3 (4 only for UL_RMC_12_2kbps_ACS)
Marker 1	Frame Clock
Marker 2	Slot Clock
Marker 3	_
AWGN addition (Note)	Enable (disable only for
	UL_RMC_12_2kbps_ACS)
RMS for single phase of IQ	1157
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$

 Table 3.1.1-1
 List of common parameters

Note:

Use a waveform pattern AWGN_3_84MHz_x2 or AWGN_3_84MHz _x1_5 for AWGN.

.....

The sampling rate for the waveform pattern must be set to 3.84 MHz \times 3 when adding waveform patterns.

Refer to Section 3.5.2 (3) "Adding Memories A and B outputs for modulation" in the MG3700A Operation Manual (Mainframe) for details of the AWGN addition method.

For UL_RMC_64kbps, UL_RMC_144kbps and UL_RMC_384kbps, addition of standard waveform pattern's AGWN is enabled only when the ARB Memory Expansion 512Msamples (Option) is installed. Channel coding parameters for UL_RMC_12_2kbps and UL_RMC_12_2kbps_ACS

Table 3.1.1-2	Physical channel parameters for UL reference
	measurement channel 12.2 kbps

Parameter	Unit	Level
Information bit rate	kbps	12.2
DPDCH	kbps	60
DPCCH	kbps	15
DPCCH Slot Format #i	_	0
DPCCH/DPDCH power ratio	dB	-2.69
TFCI	_	On
Repetition	%	23

Table 3.1.1-3	Transport channel parameters for UL reference
	measurement channel 12.2 kbps

Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	244	100
Transport Block Set Size	244	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Convolution Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

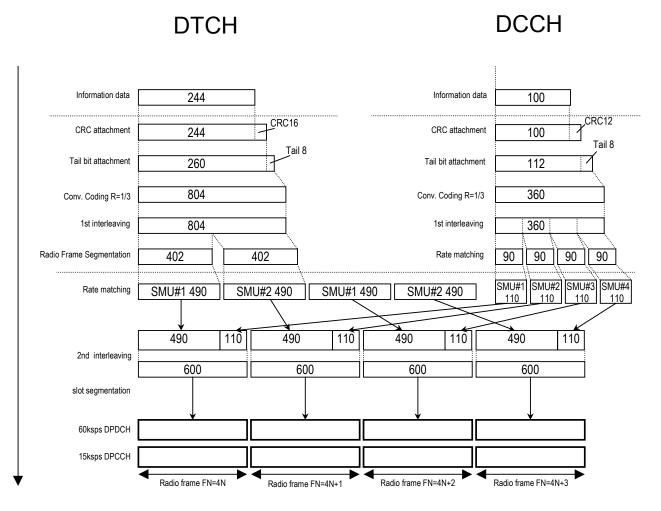


Figure 3.1.1-1 Channel coding for UL reference measurement channel (12.2 kbps)

Channel coding parameters for UL_RMC_12_2kbps_TX

Table 3.1.1-4Physical channel parameters for UL referencemeasurement channel 12.2 kbps for Tx test

Parameter	Unit	Level
Information bit rate	kbps	12.2
DPDCH	kbps	60
DPCCH	kbps	15
DPCCH Slot Format #i	—	0
DPCCH/DPDCH power ratio	dB	-5.46
TFCI	—	On
Repetition	%	23

Table 3.1.1-5	Transport channel parameters for UL reference
mea	surement channel 12.2 kbps for Tx test

Parameters	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	244	100
Transport Block Set Size	244	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Convolution Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

DCCH

DTCH

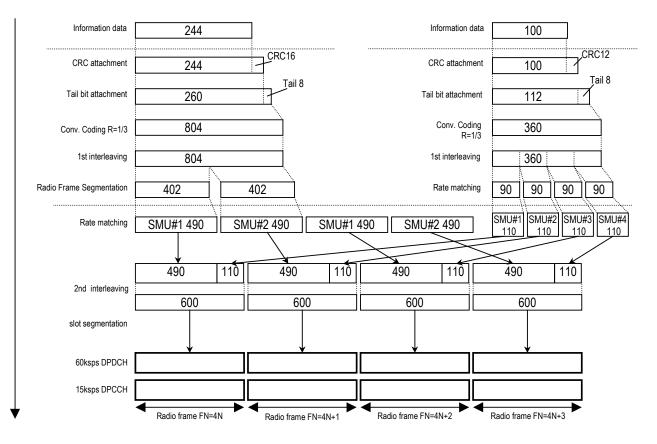


Figure 3.1.1-2 Channel coding for UL reference measurement channel (12.2 kbps)

Repetition

Channel coding parameters for UL_RMC_64kbps

measurement channel 64 kbps			
Parameter	Unit	Level	
Information bit rate	kbps	64	
DPDCH	kbps	240	
DPCCH	kbps	15	
DPCCH Slot Format #i	_	0	
DPCCH/DPDCH power ratio	dB	-5.46	
TFCI	-	On	

 Table 3.1.1-6
 Physical channel parameters for UL reference

 measurement channel 64 kbps

Table 3.1.1-7	Transport channel parameters for UL reference	
	measurement channel 64 kbps	

%

18

Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	2560	100
Transport Block Set Size	2560	100
Transmission Time Interval	40 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

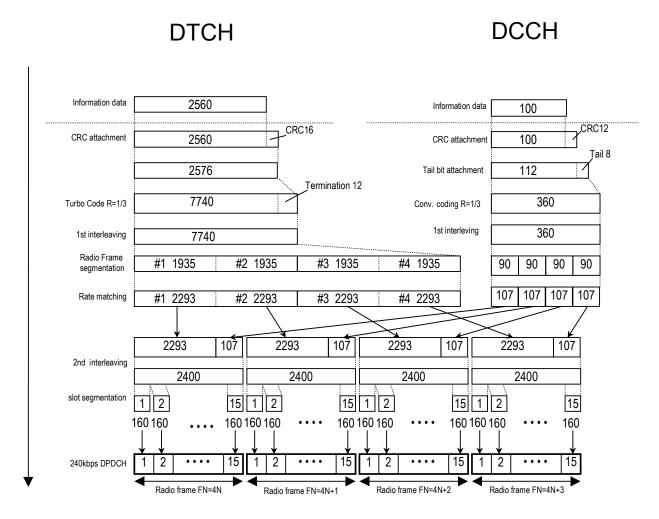


Figure 3.1.1-3 Channel coding for UL reference measurement channel (64 kbps)

Channel coding parameters for UL_RMC_144kbps

measurement channel 144 Kbps		
Parameter	Unit	Level
Information bit rate	kbps	144
DPDCH	kbps	480
DPCCH	kbps	15
DPCCH Slot Format #i	-	0
DPCCH/DPDCH power ratio	dB	-9.54
TFCI	-	On
Repetition	%	8

 Table 3.1.1-8
 Physical channel parameters for UL reference measurement channel 144 kbps

Table 3.1.1-9	Transport channel parameters for UL reference
	measurement channel 144 kbps

Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	2880	100
Transport Block Set Size	5760	100
Transmission Time Interval	40 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

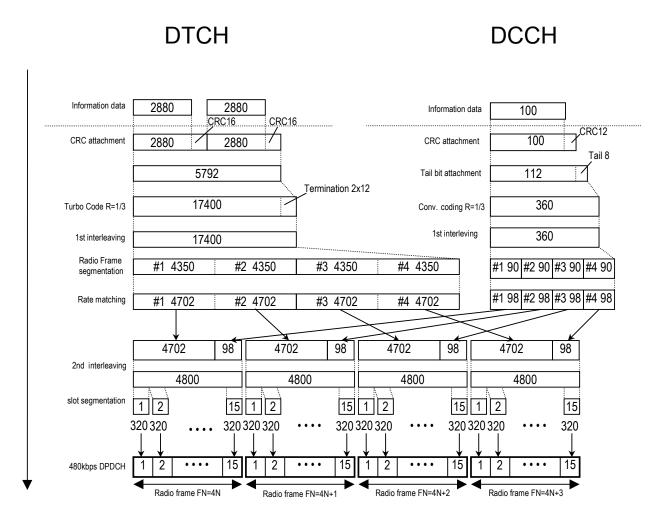


Figure 3.1.1-4 Channel coding for UL reference measurement channel (144 kbps)

Puncturing

Channel coding parameters for UL_RMC_384kbps

measurement channel 384 kbps			
Parameter	Unit	Level	
Information bit rate	kbps	384	
DPDCH	kbps	960	
DPCCH	kbps	15	
DPCCH Slot Format #i	-	0	
DPCCH/DPDCH power ratio	dB	-9.54	
TFCI	_	On	

 Table 3.1.1-10
 Physical channel parameters for UL reference

 measurement channel 384 kbps

Table 3.1.1-11	Transport channel parameters for UL reference
	measurement channel 384 kbps

%

18

Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	3840	100
Transport Block Set Size	15360	100
Transmission Time Interval	40 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

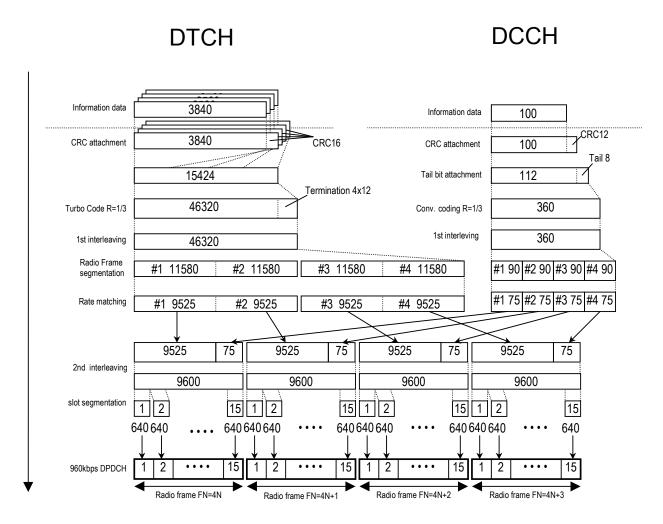


Figure 3.1.1-5 Channel coding for UL reference measurement channel (384 kbps)

3.1.2 UL_AMR_TFCSx/UL_ISDN/UL_64kbps_Packet

These waveform patterns execute channel coding, division and spreading to physical channels, and power setting conforming to the Channel coding and multiplexing example (Uplink) standard described in 3GPP TS 25.944 Section 4.1.2.

Table 3.1.2-1 lists the parameters commonly used by each waveform pattern When a waveform pattern is output, a marker signal shown in Table 3.1.2-1 is output from the AUX I/O connector on the rear panel of the MG3700A.

Parameter	Setting Value
Scrambling Code	0н
DTCH Information Data	PN9
DCCH Information Data	All 0
Over sampling rate	3
Marker 1	Frame Clock
Marker 2	Slot Clock
Marker 3	_
AWGN addition (Note)	Enable
RMS for single phase of IQ	1157
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$

Table 3.1.2-1 List of common parameters

Note: Use a waveform pattern AWGN_3_84MHz_x2 or AWGN_3_84MHz _x1_5 for AWGN. The sampling rate for the waveform pattern must be set to 3.84 MHz × 3 when adding waveform patterns.

.....

Refer to Section 3.5.2 (3) "Adding Memories A and B outputs for modulation" in the MG3700A Operation Manual (Mainframe) for details of the AWGN addition method.

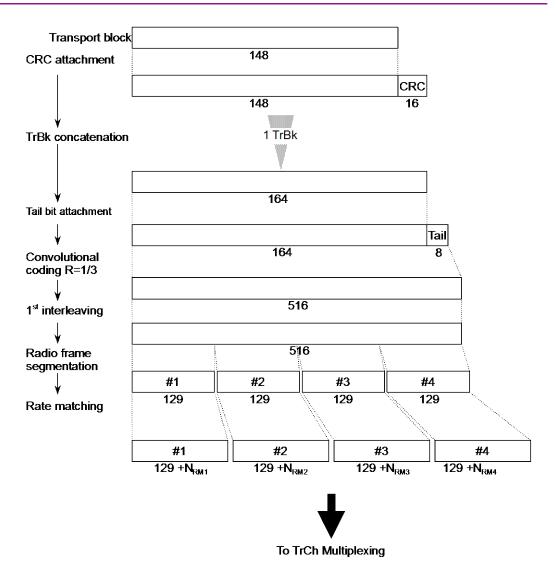
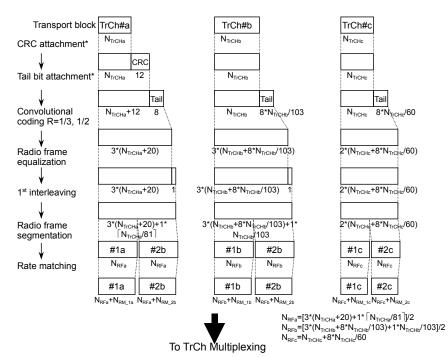
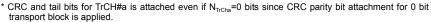
For UL_ISDN, addition of standard waveform pattern's AGWN is enabled only when the ARB Memory Expansion 512Msamples (Option) is installed. Channel coding parameters for UL_AMR_TFCSx

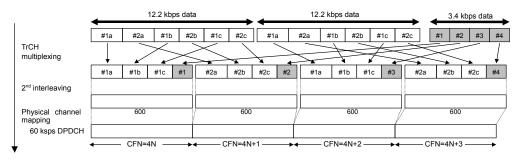
Table 3.1.2-2	Physical channel parameters for UL_AMR_TFCSx

Parameter	Unit	Level
DPDCH	kbps	60
DPCCH	kbps	15
DPCCH Slot Format #i	-	0
DPCCH/DPDCH power ratio	dB	-2.69

Table 3.1.2-3 Parameters for 3.4 kbps data (DCCH)

Transport Block Size	148 bits	
Transport Block Set Size	148 bits	
Rate Matching attribute	160	
CRC	16 bits	
Coding	CC, coding rate = $1/3$	
TTI	40 ms	


Figure 3.1.2-1 Channel coding and multiplexing for UL AMR TFCSx (1 of 2)

Number of T	rCHs	3
Transport	TrCH#a	39 or 81 bits
Block Size	TrCH#b	103 bits
	TrCH#c	60 bits
TFCS	#1	$N_{TrCHa} = 1*81$, $N_{TrCHb} = 1*103$, $N_{TrCHc} = 1*60$ bits
	#2	$N_{TrCHa} = 1*39$, $N_{TrCHb} = 0*103$, $N_{TrCHc} = 0*60$ bits
	#3	$N_{TrCHa} = 0*81$, $N_{TrCHb} = 0*103$, $N_{TrCHc} = 0*60$ bits
Rate Matchin	ng attribute	RM _a =200, RM _b =190, RM _c =235
CRC		12 bits (attached to TrCH#a only)
Coding		CC,
		coding rate = 1/3 for TrCH#a, b
		coding rate = 1/2 for TrCH#c
ТТІ		20 ms

Table 3.1.2-4 Parameters for 12.2 kbps data (DTCH)

Channel coding parameters for UL_ISDN

Table 3.1.2-5	Physical channel	parameters for UL_ISDN
---------------	------------------	------------------------

Parameter	Unit	Level
Information bit rate	kbps	64
DPDCH	kbps	240
DPCCH	kbps	15
DPCCH Slot Format #i	—	0
DPCCH/DPDCH power ratio	dB	-5.46

Table 3.1.2-6 Parameters for 64 kbps data

Number of TrChs	1	
Transport Block Size	640 bits	
Transport Block Set Size	4*640 bits	
Rate Matching attribute	170	
CRC	16 bits	
Coding	Turbo coding, coding rate = $1/3$	
ТТІ	40 ms	

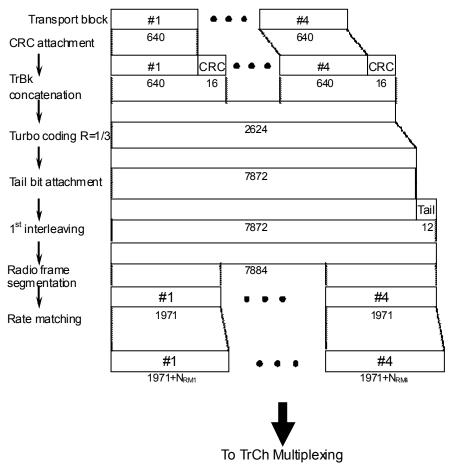


Figure 3.1.2-3 Channel coding for UL ISDN

3.1 W-CDMA Waveform Pattern

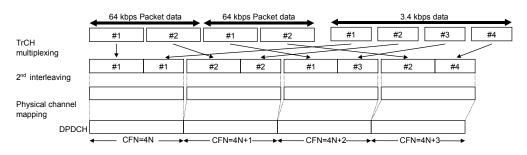


Figure 3.1.2-4 Multiplexing for UL ISDN

Channel coding parameters for UL_64kbps_Packet

Parameter	Unit	Level
Information bit rate	kbps	64
DPDCH	kbps	240
DPCCH	kbps	15
DPCCH Slot Format #i	_	0
DPCCH/DPDCH power ratio	dB	-5.46

Table 3.1.2-8 Parameters for 64 kbps data

Number of TrChs		1
Transport Block	Size	336 bits
Transport Block Set Size	64 kbps	336*B bits (B = 4)
Rate Matching a	ttribute	150
CRC		16 bits
Coding		Turbo coding, coding rate = $1/3$
ТТІ		20 ms

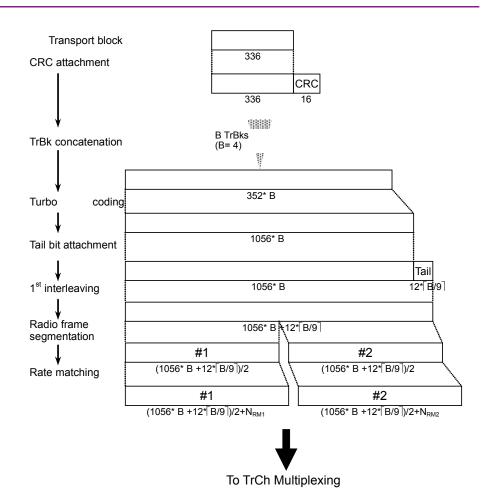


Figure 3.1.2-5 Channel coding for UL 64 kbps packet

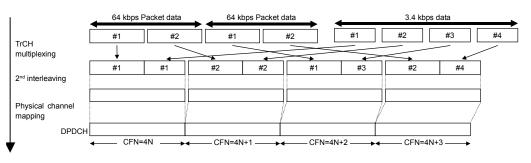


Figure 3.1.2-6 Multiplexing for UL 64 kbps packet

3.1.3 UL_Interferer

These waveform patterns execute division and spreading to physical channels, and power setting conforming to the Characteristics of the W-CDMA interference signal standard described in 3GPP TS 25.141 Annex I.

Parameter	Setting Value
Scrambling Code	1 _H
DTCH Information Data	PN9
DCCH Information Data	All 0
Over sampling rate	4, 3 (UL_Interferer_ov3)
Marker 1	Frame Clock
Marker 2	Slot Clock
Marker 3	_
AWGN addition	Disable
RMS for single phase of IQ	1157
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$

Table 3.1.3-1 UL_Interferer parameters

Table 3.1.3-2	Physical channel	parameters for UI	Interferer
---------------	------------------	-------------------	------------

Parameter	Unit	Level
Channel Bit Rate	kbps	64
DPDCH	kbps	240
DPCCH	kbps	15
DPCCH Slot Format #i	-	0
DPCCH/DPDCH power ratio	dB	-5.46

3.1.4 DL_RMCxxxkbps

These waveform patterns execute channel coding conforming to the DL Reference Measurement Channel standard described in 3GPP TS 25.101 Annex A, and execute division and spreading to physical channels in order to generate DPCH. They also execute power setting for control channels conforming to the standard described in 3GPP TS 25.101 Annex C.

Table 3.1.4-1 lists the parameters commonly used by each waveform pattern. When a waveform pattern is output, a marker signal shown in Table 3.1.4-1 is output from the AUX I/O connector on the rear panel of the MG3700A.

Parameter	Setting Value
Scrambling Code	80н
DTCH Information Data	PN9
DCCH Information Data	All 0
SFN count	4096
Over sampling rate	4
Ch Code (P-CPICH)	0
Ch Code (P-CCPCH)	1
Ch Code (PICH)	16
Ch Code (DPCH for DL_RMC_12.2kbps)	96
Ch Code (DPCH for DL_RMC_12.2kbps_RX)	96
Ch Code (DPCH for DL_RMC_12.2kbps_MIL)	96
Ch Code (DPCH for DL_RMC_64kbps)	24
Ch Code (DPCH for DL_RMC_144kbps)	12
Ch Code (DPCH for DL_RMC_384kbps)	6
Ch Code (DPCH for DL_AMR_TFCSx)	96
Ch Code (DPCH for DL_ISDN)	24
Ch Code (DPCH for DL_384kbps_Packet)	6
OCNS	See Table 3.1.4-2.
Marker 1	TTI Pulse
Marker 2	—
Marker 3	
AWGN addition	Disable
RMS for single phase of IQ	1157
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$

Table 3.1.4-1 List of common parameters

3.1 W-CDMA Waveform Pattern

Channelization Code at SF = 128	Relative Level Setting (dB)	DPCH Data
2	-1	The DPCH data for
11	-3	each channelization
17	-3	code shall be uncorrelated with
23	-5	each other and with
31	-2	any wanted signal
38	-4	over the period of any
47	-8	measurement.
55	-7	
62	-4	
69	-6	
78	-5	
85	-9	
94	-10	
125	-8	
113	-6	
119	0	

Table 3.1.4-2 Parameters for OCNS

Table 3.1.4-3	Physical channel powers for DL_RMC12_2kbps_RX and
	DL_RMC12_2kbps_ACS

Physical Channel	Power Ratio	
P-CPICH	P -CPICH_Ec/DPCH_Ec = 7 dB	
Р-ССРСН	P -CCPCH_Ec/DPCH_Ec = 5 dB	
SCH	$SCH_Ec/DPCH_Ec = 5 dB$	
PICH	$PICH_Ec/DPCH_Ec = 2 dB$	
DPCH	$DPCH_Ec/Ior = -10.3 \text{ dB}$	

Table 3.1.4-4	Physical channel	powers for DL	_RMC12_2kbps_MIL
	i nyonoar onannoi		

Physical Channel	Power ratio
P-CPICH	P -CPICH_Ec/Ior = -10 dB
Р-ССРСН	P -CCPCH_Ec/Ior = -12 dB
SCH	$SCH_Ec/Ior = -12 dB$
PICH	$PICH_Ec/Ior = -15 dB$
DPCH	$DPCH_Ec/Ior = -19 \text{ dB}$
OCNS	Power where the total power for all channels including OCNS is 0 dB

DE_1(1012_2(0)95_1112)			
Physical Channel		Power ratio	
P-CPICH		P -CPICH_Ec/Ior = -10 dB	
P-CCPCH		P -CCPCH_Ec/Ior = -12 dB	
SCH		$SCH_Ec/Ior = -12 dB$	
PICH		$PICH_Ec/Ior = -15 dB$	
	12.2 kbps	$DPCH_Ec/Ior = -16.6 dB$	
DPCH	64 kbps	$DPCH_Ec/Ior = -12.8 \text{ dB}$	
ЛРСП	144 kbps	$DPCH_Ec/Ior = -9.8 dB$	
	384 kbps	$DPCH_Ec/Ior = -5.5 dB$	
OCNS		Power where the total power for all channels including OCNS is 0 dB	

Table 3.1.4-5 Physical channel powers for DL_RMCxxxkbps (other than DL_RMC12_2kbps_RX, DL_RMC12_2kbps_ACS and DL_RMC12_2kbps_MIL)

 Channel coding parameters for DL_RMC_12_2kbps, DL_RMC_12_2kbps_RX, DL_RMC_12_2kbps_ACS and DL_RMC_12_2kbps_MIL

Table 3.1.4-6 Physical channel parameters for DL reference measurement channel 12.2 kbps

Parameter	Unit	Level
Information bit rate	kbps	12.2
DPCH	ksps	30
Slot Format #i	-	11
TFCI	-	On
Power offsets PO1, PO2 and PO3	dB	0
Puncturing	%	14.7

Table 3.1.4-7	Transport channel parameters for DL reference
	measurement channel 12.2 kbps

Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	244	100
Transport Block Set Size	244	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Convolution Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

DCCH

DTCH

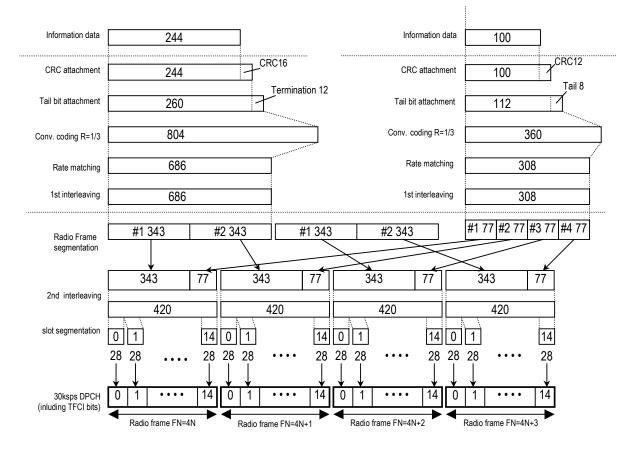


Figure 3.1.4-1 Channel coding for DL reference measurement channel (12.2 kbps)

Channel coding parameters for DL_RMC_64kbps

Table 3.1.4-8	Physical channel parameters for DL referenc	
	measurement channel 64 kbps	

Parameter	Unit	Level
Information bit rate	kbps	64
DPCH	ksps	120
Slot Format #i	-	13
TFCI	-	On
Power offsets PO1, PO2 and PO3	dB	0
Repetition	%	2.9

Table 3.1.4-9	Transport channel parameters for DL reference
	measurement channel 64 kbps

Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	1280	100
Transport Block Set Size	1280	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12
Position of TrCH in radio frame	fixed	fixed

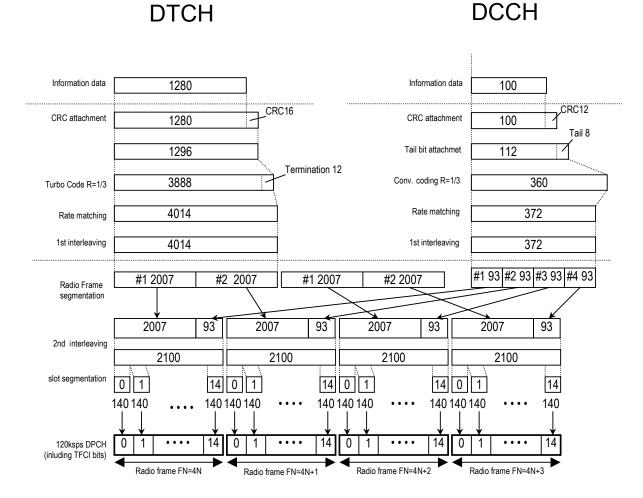


Figure 3.1.4-2 Channel coding for DL reference measurement channel (64 kbps)

Channel coding parameters for DL_RMC_144kbps

Table 3.1.4-10	Physical channel parameters for DL reference
	measurement channel 144 kbps

Parameter	Unit	Level
Information bit rate	kbps	144
DPCH	ksps	240
Slot Format #i	-	14
TFCI	—	On
Power offsets PO1, PO2 and PO3	dB	0
Puncturing	%	2.7

Table 3.1.4-11	Transport channel parameters for DL reference
	measurement channel 144 kbps

Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	2880	100
Transport Block Set Size	2880	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12
Position of TrCH in radio frame	fixed	fixed

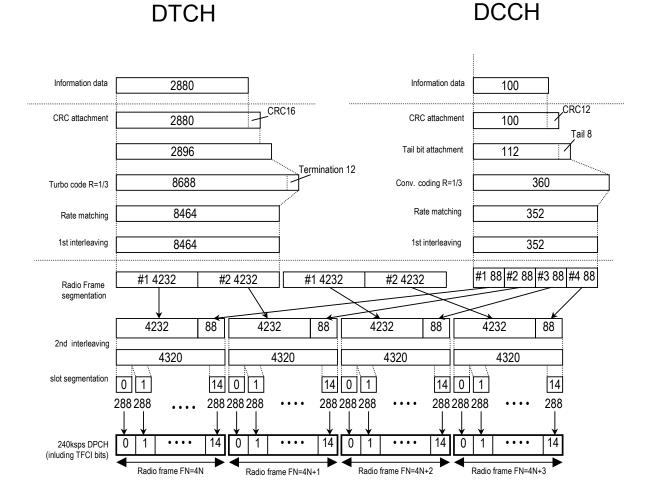


Figure 3.1.4-3 Channel coding for DL reference measurement channel (144 kbps)

Channel coding parameters for DL_RMC_384kbps

Table 3.1.4-12	Physical channel parameters for DL reference
	measurement channel 384 kbps

Parameter	Unit	Level
Information bit rate	kbps	384
DPCH	ksps	480
Slot Format #i	-	15
TFCI	—	On
Power offsets PO1, PO2 and PO3	dB	0
Puncturing	%	22

Table 3.1.4-13	Transport channel parameters for DL reference
	measurement channel 384 kbps

Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	3840	100
Transport Block Set Size	3840	100
Transmission Time Interval	10 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12
Position of TrCH in radio frame	fixed	fixed

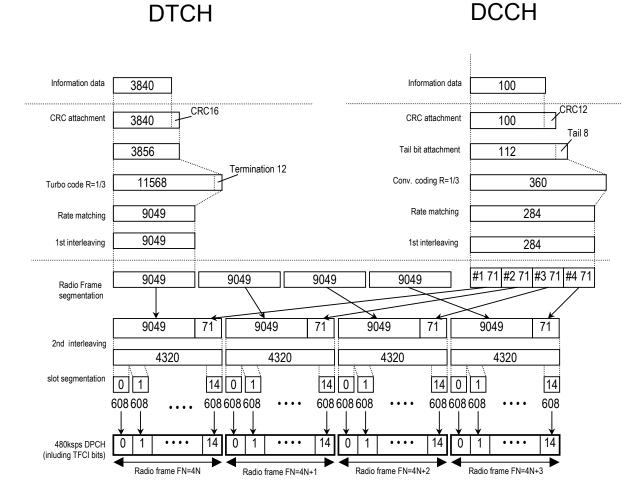


Figure 3.1.4-4 Channel coding for DL reference measurement channel (384 kbps)

3.1.5 DL_AMR_TFCSx/DL_ISDN/DL_384kbps_Packet

These waveform patterns execute channel coding, division and spreading to physical channels, and power setting conforming to the Channel coding and multiplexing example (FDD, Downlink) standard described in 3GPP TS 25.944 Section 4.1.1.

Table 3.1.5-1 lists the parameters commonly used by each waveform pattern When a waveform pattern is output, a marker signal shown in Table 3.1.5-1 is output from the AUX I/O connector on the rear panel of the MG3700A.

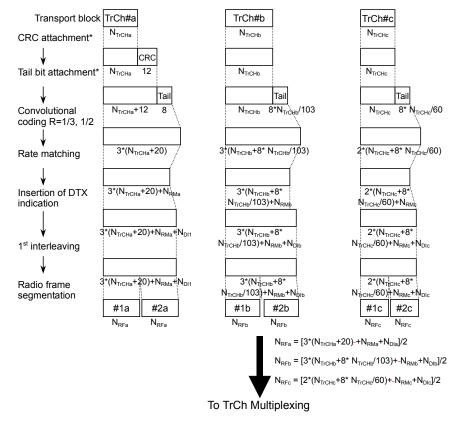

Parameter	Setting Value	
Scrambling Code	80 _H	
DTCH Information Data	PN9	
DCCH Information Data	All 0	
Over sampling rate	4	
Marker 1	TTI Clock	
Marker 2	_	
Marker 3	_	
AWGN addition	Disable	
RMS for single phase of IQ	1157	
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$	

Table 3.1.5-1 List of common parameters

Number of T	rChs	3		
Transport TrCH#a		0, 39 or 81 bits		
Block Size	TrCH#b	103 bits		
	TrCH#c	60 bits		
TFCS	#1	$N_{TrCHa} = 1*81, N_{TrCHb} = 1*103, N_{TrCHc} = 1*60$ bits		
	#2	$N_{TrCHa} = 1*39$, $N_{TrCHb} = 0*103$, $N_{TrCHc} = 0*60$ bits		
	#3	$N_{TrCHa} = 1*0, N_{TrCHb} = 0*103, N_{TrCHc} = 0*60 \text{ bits}$		
Rate Matchi	ng attribute	RM _a =200, RM _b =190, RM _c =235		
CRC		12 bits (attached to TrCh#a only)		
CRC parity b		Applied to TrCh#a only.		
attachment				
transport blo	ОСК			
Coding		CC,		
		coding rate = 1/3 for TrCh#a, b		
		coding rate = 1/2 for TrCh#c		
ТТІ		20 ms		

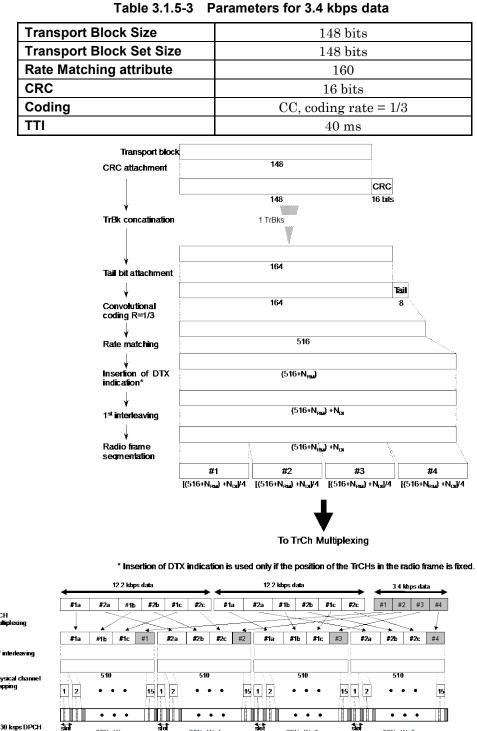

Channel coding parameters for DL_AMR_TFCSx

Table 3.1.5-2 Parameters for 12.2 kbps data

* CRC and tail bits for TrCH#a is attached even if N_{TrCha}=0 bits since CRC parity bit attachment for 0 bit transport block is applied.

Figure 3.1.5-1 Channel coding and multiplexing for DL AMR TFCSx (1 of 2)

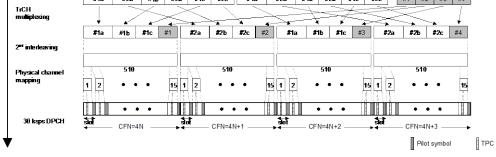


Table 3.1.5-4 Physical channel parameters for 12.2 kbps and 3.4 kbps data

Symbol Rate (ksps)	N _{pilot} (bits)	N _{TFCI} (bits)	N _{TPC} (bits)	N _{data1} (bits)	N _{data2} (bits)
30	4	0	2	6	28

Channel coding parameters for DL_ISDN

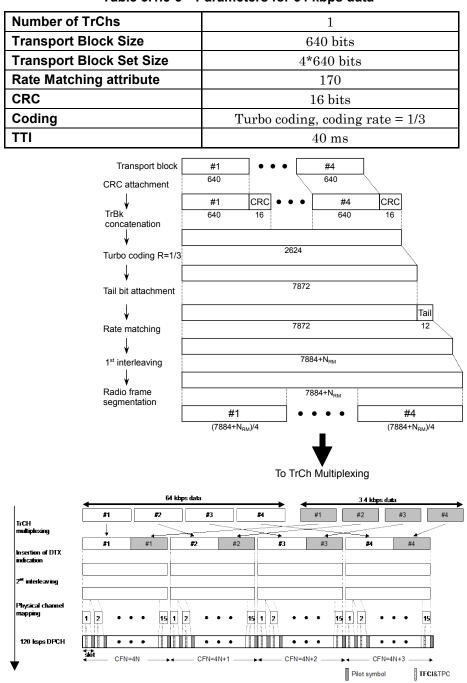


Table 3.1.5-5 Parameters for 64 kbps data

Figure 3.1.5-3 Channel coding and multiplexing for DL ISDN

Table 3.1.5-6 Physical channel parameters for 64 kbps and 3.4 kbps data

Symbol Rate (ksps)	No. of Physical Channel	N _{pilot} (bits)	N _{TFCI} (bits)	N _{TPC} (bits)	N _{data1} (bits)	N _{data2} (bits)
120	1	8	8	4	28	112

Channel coding parameters for DL_384kbps_Packet

Table 3.1.5-7	Packet data	parameters	for 384 kbps data
---------------	-------------	------------	-------------------

Number of TrChs	1		
Transport Block Size	336 bits		
Transport Block Set Size	336*B bits (B = 12)		
Rate Matching attribute	145		
CRC	16 bits		
Coding	Turbo coding, coding rate = $1/3$		
ТТІ	10 ms		

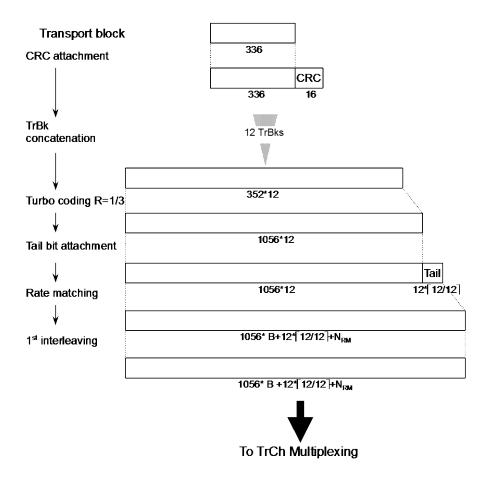


Figure 3.1.5-4 Channel coding for DL 384 kbps packet

3.1 W-CDMA Waveform Pattern

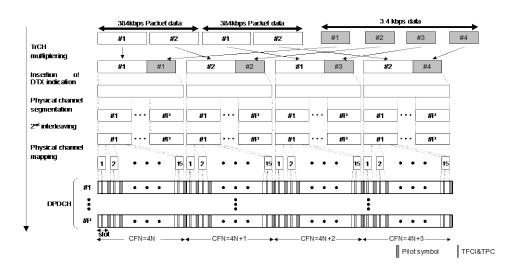


Figure 3.1.5-5 Multiplexing for DL 384 kbps

Table 3.1.5-8	Physical channel	parameters for 384 kb	ps and 3.4 kbps data
---------------	------------------	-----------------------	----------------------

Data Rate	Symbol Rate	No. of Physical	N _{pilot}	N _{TFCI}	N _{тРС}	N _{data1}	N _{data2}
(kbps)	(ksps)	Channel: P	(bits)	(bits)	(bits)	(bits)	(bits)
384	480	1	16	8	8	120	488

3.1.6 DL_Interferer

DL_Interferer is a modulated signal code-multiplexed according to the parameters described in 3GPP TS25.104 Annex C.4 W-CDMA Modulated Interferer.

Table 5.1.0-1	
Parameter	Setting Value
Scrambling Code	0 _H
Over sampling rate	4, 3 (DL_Interferer_ov3)
RMS for single phase of IQ	1157
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$

Table 3.1.6-1 Parameters for DL_Interferer

Tabl	e 3.1.6-2	Physic	al chan	nel para	meters for	DL_Inter	ferer	

Channel Type	Spreading Factor	Channelization Code	Timing Offset (x256T _{chip})	Power	Note
P-CCPCH	256	1	0	P-CCPCH_Ec/Ior = -10 dB	
SCH	256	_	0	SCH_Ec/Ior = -10 dB	The SCH power is equally divided and distributed into 2 channels of P-SCH and S-SCH.
P-CPICH	256	0	0	P-CPICH_Ec/Ior = -10 dB	
PICH	256	16	16	PICH_Ec/Ior = -15 dB	
OCNS	See Table 3	.1.6-3.			The total power of the OCNS channel and all the channels above is 0 dB.

3.1 W-CDMA Waveform Pattern

Channelization Code at SF = 128	Relative Level Setting (dB)	DPCH Data
2	-1	The DPCH data for
11	-3	each channelization
17	-3	code shall be uncorrelated with
23	-5	each other and with
31	-2	any wanted signal
38	-4	over the period of any
47	-8	measurement.
55	-7	
62	-4	
69	-6	
78	-5	
85	-9	
94	-10	
125	-8	
113	-6	
119	0	

Table 3.1.6-3 Parameters for OCNS

3.1.7 TestModel_x_xxDPCH

TestModel_x_xxDPCH is a downlink multiplexed signal that is code-multiplexed according to the parameters described in 3GPP TS25.141 Section 11.4.0 Test Models.

Table 3.1.7-1 List of common parameters

Parameter	Setting Value
Scrambling Code (*1)	0 _H
Over sampling rate	4
RMS for single phase of IQ	1157
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$

*1: For offset frequency (5*N[MHz]) of multicarrier when the lowest frequency carrier is 0, the Scrambling Code of each carrier is N. Time offset for each carrier frame is N/5, 2*N/5, 3*N/5, ... when setting the carrier of N=0 as the reference

♦ Test Model 1

Туре	Number of Channels	Fraction of Power (%)	Level Setting (dB)	Channelization Code	Timing Offset (x256T _{chip})	
P-CCPCH+SCH	1	10	-10	1	0	
Primary CPICH	1	10	-10	0	0	
PICH	1	1.6	-18	16	120	
S-CCPCH containing PCH (SF = 256)	1	1.6	-18	3	0	
DPCH (SF = 128)	4/8/16/32/64	76.8 in total	See Table 3.1.7-3.			

The multicarriers (Test_Model_1_64DPCHx2/3/4) of Test Model 1 are assigned to the offset frequency as follows:

Test_Model_1_64DPCHx2 (2 carriers):	–2.5 MHz, +2.5 MHz
Test_Model_1_64x2_10M (2 carriers):	–5 MHz, +5 MHz
Test_Model_1_64x2_15M (2 carriers):	–7.5 MHz, +7.5 MHz
Test_Model_1_64DPCHx3 (3 carriers):	0 MHz, +10 MHz, +15 MHz
	(+5 MHz carrier is blank.)
Test_Model_1_64DPCHx4 (4 carriers):	–7.5 MHz, –2.5 MHz, +2.5 MHz,
	+7.5 MHz

3.1 W-CDMA Waveform Pattern

Code	Timing Offset (x256Tchip)	Level settings (dB) (4 codes)	Level settings (dB) (8 codes)	Level Settings (dB) (16 codes)	Level Settings (dB) (32 codes)	Level Settings (dB) (64 codes)
2	86	-5	-7	-10	-13	-16
11	134	—	-16	-12	-13	-16
17	52	—	—	-12	-14	-16
23	45	—	—	-14	-15	-17
31	143	_	_	-11	-17	-18
38	112	-7	-11	-13	-14	-20
47	59	—	—	-17	-16	-16
55	23	—	-11	-16	-18	-17
62	1	—	—	-13	-16	-16
69	88	—	—	-15	-19	-19
78	30	-9	-10	-14	-17	-22
85	18	—	-12	-18	-15	-20
94	30	—	—	-19	-17	-16
102	61	—	—	-17	-22	-17
113	128	—	-8	-15	-20	-19
119	143	-9	-12	-9	-24	-21
7	83	—	—	_	-20	-19
13	25	—	—	_	-18	-21
20	103	—	—	_	-14	-18
27	97	—	—	_	-14	-20
35	56	—	—	_	-16	-24
41	104	—	—	_	-19	-24
51	51	—	—	_	-18	-22
58	26	—	—	_	-17	-21
64	137	—	—	_	-22	-18
74	65	—	—	_	-19	-20
82	37	—	—	_	-19	-17
88	125	—	—	_	-16	-18
97	149	—	—	_	-18	-19
108	123	—	—	_	-15	-23
117	83	—	—	_	-17	-22
125	5	—	—	_	-12	-21
4	91	—	—	_	_	-17
9	7	—	—	_	_	-18
12	32	—	—	_	_	-20

 Table 3.1.7-3
 Parameters for DPCH

Code	Timing Offset (x256Tchip)	Level settings (dB) (4 codes)	Level settings (dB) (8 codes)	Level Settings (dB) (16 codes)	Level Settings (dB) (32 codes)	Level Settings (dB) (64 codes)
14	21	—	—	_	_	-17
19	29	—	—	_	_	-19
22	59	—	—	_	_	-21
26	22	—	—	_	_	-19
28	138	—	—	_	_	-23
34	31	—	—	_	_	-22
36	17	—	—	_	_	-19
40	9	—	—	_	_	-24
44	69	—	—	_	_	-23
49	49	—	—	_	_	-22
53	20	—	—	_	_	-19
56	57	—	—	_	_	-22
61	121	—	—	_	_	-21
63	127	—	—	_	_	-18
66	114	—	—	_	_	-19
71	100	—	—	_	_	-22
76	76	—	—	_	_	-21
80	141	—	—	_	_	-19
84	82	—	—	_	_	-21
87	64	—	—	-	_	-19
91	149	—	—	-	_	-21
95	87	—	—	-	_	-20
99	98	—	—	_	_	-25
105	46	—	—	_	_	-25
110	37	—	—	_	_	-25
116	87	—	—	_	_	-24
118	149	—	—	_	_	-22
122	85	_	—	_	_	-20
126	69	—	—	_	_	-15

 Table 3.1.7-3
 Parameters for DPCH (Cont'd)

♦ Test Model 2

Туре	Number of Channels	Fraction of Power (%)	Level Setting (dB)	Channelization Code	Timing Offset (x256T _{chip})
P-CCPCH+SCH	1	10	-10	1	0
Primary CPICH	1	10	-10	0	0
PICH	1	5	-13	16	120
S-CCPCH containing PCH (SF = 256)	1	5	-13	3	0
DPCH (SF = 128)	3	2 x 10, 1 x 50	2 x -10, 1 x -3	24, 72, 120	1, 7, 2

Table 3.1.7-4 Channel configuration of Test Model 2

♦ Test Model 3

Туре	Number of Channels	Fraction of Power (%) 4/8/16/32	Level Setting (dB) 4/8/16/32	Channelization Code	Timing Offset (x256T _{chip})
P-CCPCH+SCH	1	15,8/15,8/12, 6/7,9	-8/-8/ -9/-11	1	0
Primary CPICH	1	15,8/15,8/12, 6/7,9	-8/-8/ -9/-11	0	0
PICH	1	2.5/2.5/5/1.6	-16/-16/ -13/-18	16	120
S-CCPCH containing PCH (SF = 256)	1	2.5/2.5/5/1.6	-16/-16/ -13/-18	3	0
DPCH (SF = 256)	4/8/16/32	63,4/63,4/63, 7/80,4 in total	See Table 3.1.	7-6.	

Table 3.1.7-5 Channel configuration of Test Model 3

	Table 3.1.7-6 Parameters for Test Model 3								
Code	T _{offset}	Level settings (dB) (4 codes)	Level settings (dB) (8 codes)	Level Settings (dB) (16 codes)	Level Settings (dB) (32 codes)				
64	86	-8	-11	-14	-16				
69	134	—	—	-14	-16				
74	52	—	-11	-14	-16				
78	45	—	_	-14	-16				
83	143	_		-14	-16				
89	112	-8	-11	-14	-16				
93	59	_	_	-14	-16				
96	23	—	-11	-14	-16				
100	1	—		-14	-16				
105	88	—	_	-14	-16				
109	30	-8	-11	-14	-16				
111	18	—	-11	-14	-16				
115	30	—	_	-14	-16				
118	61	—	_	-14	-16				
122	128	—	-11	-14	-16				
125	143	-8	-11	-14	-16				
67	83	—	_	_	-16				
71	25	—	—	-	-16				
76	103	—	_	_	-16				
81	97	—		_	-16				
86	56	—	—	-	-16				
90	104	—	_	_	-16				
95	51	—	_	_	-16				
98	26	—	—	-	-16				
103	137	—	_	_	-16				
108	65	—	_	_	-16				
110	37	—	_	_	-16				
112	125	—	—	_	-16				
117	149	—	_	_	-16				
119	123		_	_	-16				
123	83	—	_	_	-16				
126	5	—	_	_	-16				

Table 3.1.7-6 Parameters for Test Model 3

♦ Test Model 4

Туре	Number of Channels	Fraction of Power (%)	Level Setting (dB)	Channelization Code	Timing Offset
P-CCPCH+SCH when Primary CPICH is disabled	1	100	0	1	0
P-CCPCH+SCH when Primary CPICH is enabled	1	50	-3	1	0
Primary CPICH1	1	50	-3	0	0

Table 3.1.7-7 Channel configuration of Test Model 4

3.1.8 TestModel_5_xDPCH

These waveforms are downlink multiplexed signals that include HS-SCCH and HS-PDSCH equivalent to Test Model 5, which is described in 3GPP TS25.141 Section 6.1.

The settings are the same as that shown in Section 3.1.9. Refer to 3.1.9 "TestModel_5_xHSPDSCH" for details.

3.1.9 TestModel_5_xHSPDSCH

These waveforms are downlink multiplexed signals that include HS-SCCH and HS-PDSCH equivalent to Test Model 5, which is described in 3GPP TS25.141 Section 6.1.

Parameter	Setting Value		
Scrambling Code	0 _H		
Over sampling rate	4		
RMS for single phase of IQ	1157		
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$		

Table 3.1.9-1 List of common parameters

Table 3.1.9-2	Channel	configuration of	Test Model 5
---------------	---------	------------------	--------------

Туре	Number of Channels	Level Setting (dB)	Channelization Code	Timing Offset (x256T _{chip})
P-CCPCH+SCH	1	-11	1	0
Primary CPICH	1	-11	0	0
PICH	1	-19	16	120
S-CCPCH containing PCH (SF = 256)	1	-19	3	0
DPCH (SF = 128)	30/14/6/4 (*)	See Table 3.1.9-3.		
HS-SCCH	2	See Table 3.1.9-4.		
HS-PDSCH (16QAM)	8/4/2 (*)	See Table 3.1.9-5.		

*: DPCH is 6 channels when HS-PDSCH is 2 channels,
 4 channels or 14 channels when HS-PDSCH is 4 channels, and
 30 channels when HS-PDSCH is 8 channels.

3.1 W-CDMA Waveform Pattern

Code (SF = 128)	Timing Offset (x256Tchip)	Level Settings (dB) (30 codes)	Level Settings (dB) (14 codes)	Level Settings (dB) (6 codes)	Level settings (dB) (4 codes)
15	86	-20	-17	-17	-15
23	134	-20	-19	-15	-15
68	52	-21	-19	-15	-18
76	45	-22	-20	-18	-12
82	143	-24	-18	-16	—
90	112	-21	-20	-17	—
5	59	-23	-25	_	—
11	23	-25	-23	_	—
17	1	-23	-20	_	—
27	88	-26	-22	_	—
64	30	-24	-21	_	—
72	18	-22	-22	_	—
86	30	-24	-19	_	—
94	61	-28	-20	_	_
3	128	-27	_	_	—
7	143	-26	_	_	—
13	83	-27	_	_	—
19	25	-25	_	_	—
21	103	-21	_	_	
25	97	-21	_	_	_
31	56	-23	_	_	_
66	104	-26	_	_	_
70	51	-25	-	_	_
74	26	-24	_	_	—
78	137	-27	_	_	_
80	65	-26	-	_	—
84	37	-23	_	_	_
88	125	-25	_	_	
89	149	-22	_	_	_
92	123	-24	_	_	—

Table 3.1.9-3 Setting for DPCH

Table 3.1.9-4 Settings for HS-SCCH

Code (SF = 128)	Timing Offset (x256Tchip)	Level Settings (dB)	
9	0	-15	
29	0	-21	

Code (SF = 16)	Timing Offset (x256Tchip)	Level Settings (dB) (8 codes)	Level Settings (dB) (4 codes)	Level Settings (dB) (2 codes)
4	0	-11	-8	-5
5	0	-11	-8	-
6	0	-11	—	—
7	0	-11	-	-
12	0	-11	-8	-5
13	0	-11	-8	—
14	0	-11	_	_
15	0	-11	—	-

Table 3.1.9-5 Setting for HS-PDSCH

3.1.10 TestModel_6_xHSPDSCH

These waveforms are downlink multiplexed signals that include HS-SCCH and HS-PDSCH equivalent to Test Model 6, which is described in 3GPP TS25.141 Section 6.1.

Table 3.1.10-1	List of common	parameters
----------------	----------------	------------

Parameter	Setting Value
Scrambling Code	0 _H
Over sampling rate	4
RMS for single phase of IQ	1157
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$

Туре	Number of Channels	Level Setting (dB)	Channelization Code	Timing Offset (x256T _{chip})
P-CCPCH+SCH	1	-11	1	0
Primary CPICH	1	-11	0	0
PICH	1	-19	16	120
S-CCPCH containing PCH (SF = 256)	1	-19	3	0
DPCH (SF = 128)	30/4(*)	See Table 3.1.10-3.		
HS-SCCH	2	See Table 3.1.10-4.		
HS-PDSCH (64QAM)	8/4(*) See Table 3.1.10-5.			

*: DPCH is 4 channels when 4 HS-PDSCH is 4 channels, and 30 channels when HS-PDSCH is 8 channels.

Section 3 Details of Standard Wa	aveform Pattern
----------------------------------	-----------------

Code (SF = 128)Timing Offset (x256Tchip)Level Settings (dB) (30 codes)Level settings (dB) (4 codes)1586-17-1323134-17156852-18-97645-19-1282143-21-90112-18-559-20-1123-22-1123-22-1123-22-1123-21-71-20-171-20-18-19718-19-9461-25-7143-23-1383-24-1925-22-211003-18-3156-20-7426-21-78137-24-78137-24-8065-23-8437-22-89149-22-92123-21-	Table 3.1.10-3 Setting for DPCH					
23 134 -17 -15 68 52 -18 -9 76 45 -19 -12 82 143 -21 $-$ 90 112 -18 $-$ 5 59 -20 $-$ 11 23 -22 $-$ 17 1 -20 $-$ 17 1 -20 $-$ 27 88 -23 $-$ 64 30 -21 $-$ 72 18 -19 $-$ 86 30 -21 $-$ 94 61 -25 $-$ 3 128 -24 $-$ 7 143 -23 $-$ 13 83 -24 $-$ 19 25 -22 $-$ 21 103 -18 $-$ 31 56 -20 $-$ 66 104 -23 $-$ 74						
68 52 -18 -9 76 45 -19 -12 82 143 -21 $ 90$ 112 -18 $ 5$ 59 -20 $ 11$ 23 -22 $ 17$ 1 -20 $ 17$ 1 -20 $ 27$ 88 -23 $ 64$ 30 -21 $ 72$ 18 -19 $ 72$ 18 -19 $ 86$ 30 -21 $ 94$ 61 -25 $ 3$ 128 -24 $ 7$ 143 -23 $ 13$ 83 -24 $ 19$ 25 -22 $ 21$ 103 -18 $ 25$ 97 -18 $ 74$ 26	15	86	-17	-13		
76 45 -19 -12 82 143 -21 $ 90$ 112 -18 $ 5$ 59 -20 $ 11$ 23 -22 $ 11$ 23 -22 $ 17$ 1 -20 $ 27$ 88 -23 $ 64$ 30 -21 $ 72$ 18 -19 $ 86$ 30 -21 $ 94$ 61 -25 $ 3$ 128 -24 $ 7$ 143 -23 $ 13$ 83 -24 $ 19$ 25 -22 $ 21$ 103 -18 $ 31$ 56 -20 $ 66$ 104 -23 $ 70$ 51 -22 $ 74$ 26	23	134	-17	-15		
82 143 -21 $ 90$ 112 -18 $ 5$ 59 -20 $ 11$ 23 -22 $ 17$ 1 -20 $ 17$ 1 -20 $ 27$ 88 -23 $ 64$ 30 -21 $ 72$ 18 -19 $ 86$ 30 -21 $ 94$ 61 -25 $ 3$ 128 -24 $ 7$ 143 -23 $ 13$ 83 -24 $ 19$ 25 -22 $ 21$ 103 -18 $ 25$ 97 -18 $ 21$ 103 -18 $ 70$ 51 -22 $ 74$ 26 -21 $ 74$ 26	68	52	-18	-9		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76	45	-19	-12		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	82	143	-21	—		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90	112	-18	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	59	-20	—		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	23	-22	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	1	-20	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	88	-23	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	64	30	-21	—		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	72	18	-19	—		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	86	30	-21	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	94	61	-25	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	128	-24	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	143	-23	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	83	-24	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	25	-22	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	103	-18	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	97	-18	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31	56	-20	—		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	66	104	-23	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	70	51	-22	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	74	26	-21	_		
84 37 -22 - 88 125 -22 - 89 149 -22 -	78	137	-24			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	65	-23			
89 149 -22 -	84	37	-22			
	88	125	-22			
92 123 -21 -	89	149	-22			
	92	123	-21	_		

Table 3.1.10-3 Setting for DPCH

3.1 W-CDMA Waveform Pattern

Table 3.1.10-4 Settings for HS-SCCH

Code (SF = 128)	Timing Offset (x256Tchip)	Level Settings (dB)
9	0	-15
29	0	-21

Table 3.1.10-5 Setting for HS-PDSCH

Code (SF = 16)	Timing Offset (x256Tchip)	Level Settings (dB) (8 codes)	Level settings (dB) (4 codes)
4	0	-12	-9
5	0	-12	-9
6	0	-12	_
7	0	-12	_
12	0	-12	-9
13	0	-12	-9
14	0	-12	
15	0	-12	

3.2 PDC Waveform Pattern

As the PDC waveform pattern, waveform patterns that output uplink/downlink slot 0 only at the full rate or half rate, and unframed waveform patterns for interference signals are provided as shown in Table 3.2-1.

Waveform Pattern Name	Uplink/Downlink	Half Rate/Full Rate	Output Slot
PI_4_DQPSK_PN9	_	_	Unframed
PI_4_DQPSK_PN15	—	_	Unframed
DL_Full_Rate_Slot0	Downlink	Full rate	Slot 0 only
DL_Half_Rate_Slot0	Downlink	Half rate	Slot 0 only
UL_Full_Rate_Slot0	Uplink	Full rate	Slot 0 only
UL_Half_Rate_Slot0	Uplink	Half rate	Slot 0 only
CW	_	_	_

Table 3.2-1 List of PDC waveform patterns

When a PDC waveform pattern is output, a marker signal shown in Table 3.2-2 is output from the AUX I/O connector on the rear panel of the MG3700A.

Table 3.2-2 Marker output data and IQ output level

Marker Signal	Output Data
Marker 1	Frame Clock
Marker 2	RF Gate
Marker 3	Symbol Clock
RMS for single phase of IQ	1634
IQ output level	$\sqrt{I^2 + Q^2} = 453 \text{ mV}$

Transfer and selection of an additional waveform pattern that is generated by adding two signals, such as a desired signal + an interference signal, and using two memories, can be operated easily by selecting a combination file listed in Table 3.2-3 below when the MG3700A is in the Defined mode.

Combination File Name	Comment
PDC_BS_FULL_RATE_ACS	For base station adjacent channel selectivity test
	UL_Full_Rate_Slot0+PI_4_DQPSK_PN15 (50 kHz offset)
PDC_BS_FULL_RATE_IMD	For base station intermodulation characteristics test
	UL_Full_Rate_Slot0+CW (200 kHz offset) *1
PDC_BS_FULL_RATE_SR	For base station spurious sensitivity test
	UL_Full_Rate_Slot0+CW (100 kHz offset)
PDC_BS_HALF_RATE_ACS	For base station adjacent channel selectivity test
	UL_Half_Rate_Slot0+PI_4_DQPSK_PN15 (50 kHz offset)
PDC_BS_HALF_RATE_IMD	For base station intermodulation characteristics test
	UL_Half_Rate_Slot0+CW (200 kHz offset) *1
PDC_BS_HALF_RATE_SR	For base station spurious sensitivity test
	UL_Half_Rate_Slot0+CW (100 kHz offset)
PDC_UE_FULL_RATE_ACS	For mobile station adjacent channel selectivity test
	DL_Full_Rate_Slot0+PI_4_DQPSK_PN15 (50 kHz offset)
PDC_UE_FULL_RATE_IMD	For mobile station intermodulation characteristics test
	DL_Full_Rate_Slot0+CW (200 kHz offset) *1
PDC_UE_FULL_RATE_SR	For mobile station spurious sensitivity test
	DL_Full_Rate_Slot0+CW (100 kHz offset)
PDC_UE_HALF_RATE_ACS	For mobile station adjacent channel selectivity test
	DL_Half_Rate_Slot0+PI_4_DQPSK_PN15 (50 kHz offset)
PDC_UE_HALF_RATE_IMD	For mobile station intermodulation characteristics test
	DL_Half_Rate_Slot0+CW (200 kHz offset) *1
PDC_UE_HALF_RATE_SR	For mobile station spurious sensitivity test
	DL_Half_Rate_Slot0+CW (100 kHz offset)

Table 3.2-3 List of combination files for PDC reception evaluation

*1: The high-frequency signal generator 1 (modulated desired signal) and the high-frequency signal generator 3 (CW interference signal) are used in combination. When executing an intermodulation characteristics test, it must be externally added with a CW signal (high-frequency signal generator 2) with 100 kHz offset that is generated by another CW signal generator.

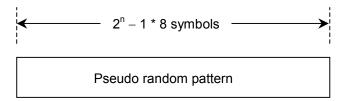
3.2.1 Frame configuration

At full rate

The PDC system consists of TDMA frames that are composed of three slots, and data is generated cyclically based on one TDMA frame. A PN9 pseudo random pattern in each slot is independent within the slot and has continuity. In downlink, all 1 data are output for the bit sequence in Slots 1 and 2. In uplink, Slots 1 and 2 are burst off.

Figure 3.2.1-1 Frame configuration at full rate

At half rate


The PDC system consists of TDMA frames that are composed of six slots, and data is generated cyclically based on one TDMA frame. A PN9 pseudo random pattern in each slot is independent within the slot and has continuity. In downlink, all 1 data are output for the bit sequence in Slots 1 through 5. In uplink, Slots 1 through 5 are burst off.

< 40 ms					, , , , ,		
	Slot 0	Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	

Figure 3.2.1-2 Frame configuration at half rate

Unframed waveform pattern

For interference signals, unframed pseudo random patterns are output for which $\pi/4$ DQPSK modulation was performed. At this time, the positions of the first and last symbol points of the arbitrary waveform pattern are changed to adjust the data length, so as to retain the continuity of the pseudo random pattern.

3.2.2 Slot configuration

There are four types of slot configurations according to the communication channels (uplink/downlink).

Uplink communication channel (UP TCH)

	R	Р	ТСН	SW	СС	SF	SACCH	тсн	G	
	4	2	112	20	8	1	15	112	6	
	4	2	112	20	0	_	15	112	0	
R:	R: Guard time for burst transient response $0_{\rm H}$ (4 bits)									
P:		Preamble $2_{\rm H} (2 \text{ bits})$								
TCH	:	Foi	r user inform	nation tr	ansfe	r	PN pseud	lo random pa	ttern	
	indepe				independ	ent in each sl	lot (PN	V		
							pattern is	s continuous :	in TCl	H of
a slot).										
SW:		Syı	nc word				Slot $0 = 785B4_{\rm H}$ (20 bits)			
							Slot 1 = $62DC9_H$ (20 bits)			
							Slot $2 = 7$	'E28Aн (20 bi	its)	
CC:		Col	lor code					$00_{ m H}$ (8 bits)		
SF:		Steal flag				$0_{ m H}$ (1 bit)				
SACCH: Low-speed associated control chan					annel	0000H (15 bi	ts)			
G:		Guard time for burst transient response $0_{ m H}$ (6 bits)								
Scramble function (TCH, SF, SACCH): Off										

Downlink communication channel (DOWN TCH)

									_
	R	Р	ТСН	SW	сс	SF	SACCH	ТСН	
	4	2	112	20	8	1	21	112	
R:	Guard time for burst transient response $0_{\rm H}$ (4 bits)								
D:	Pr	ear	nble				$2_{ m H}$	(2 bits)	
TCH:	Fo	or u	ser informat	ion tran	sfer	PN	l pseudo i	random patte	ern
						inc	lependen	t in each slot	(PN
						pa	ttern is co	ontinuous in	TCH of
						a s	lot).		
SW:	Sy	nc	word			Slot $0 = 87A4B_H$ (20 bits)			
						Slot $1 = 9D236_{\rm H}$ (20 bits)			
						Slo	t = 811	$075_{ m H}~(20~{ m bits})$	1
CC:	Co	Color code					00	$_{ m H}$ (8 bits)	
SF:	Steal flag $0_{\rm H}$ (1 bit)								
SACCH	SACCH: Low-speed associated control channel 000000H (21 bits)						ts)		
Scramb	le fi	inc	tion (TCH, S	F, SAC	CH):		Of	f	

3.3 PDC PACKET Waveform Pattern

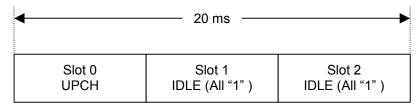
As the PDC PACKET waveform pattern, waveform patterns for uplink and downlink are provided as shown in Table 3.3-1.

Waveform Pattern Name	Uplink/Downlink	Output Slot
DL_Packet_Slot_0	Downlink	Slot 0 only
DL_Packet_Slot_01	Downlink	Slots 0 and 1
DL_Packet_Slot_all	Downlink	Slots 0, 1, and 2
UL_Packet_Slot_0	Uplink	Slot 0 only

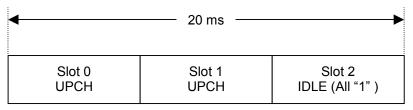
Table 3.3-1 List of PDC PACKET waveform patterns

When a PDC PACKET waveform pattern is output, a marker signal shown in Table 3.3-2 is output from the AUX I/O connector on the rear panel of the MG3700A.

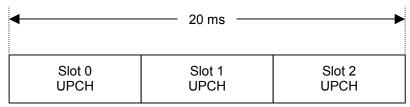
Table 3.3-2 Marker output data and IQ output level


Marker Signal	Output Data
Marker 1	Frame Clock
Marker 2	RF Gate
Marker 3	Symbol Clock
RMS for single phase of IQ	1634
IQ output level	$\sqrt{I^2 + Q^2} = 453 \text{ mV}$

3.3.1 Frame configuration


There are four types of TDMA frame configurations for PDC PACKET waveform patterns: downlink 1-slot transmission, downlink 2-slot transmission, downlink 3-slot transmission, and uplink 1-slot transmission. Each TDMA frame is composed of three slots, and data is generated cyclically based on one TDMA frame.

A PN9 pseudo random pattern in the CAC field of each slot has continuity. In downlink UPCH 2-slot transmission, for example, the end of the CAC field in Slot 0 and the start of the CAC field in Slot 1 are continuing. Also, the end of the CAC field in Slot 1 and the start of the CAC field in Slot 0 of the next frame are continuing in this case.


Downlink UPCH 1-slot transmission (DL_Packet_Slot_0)

Downlink UPCH 2-slot transmission (DL_Packet_Slot_01)

Downlink UPCH 3-slot transmission (DL_Packet_Slot_all)

Uplink UPCH 1-slot transmission (UL_Packet_Slot_0)

•	20 ms	
Slot 0	Slot 1	Slot 2
UPCH	Transmission Off	Transmission Off

3.3.2 Slot configuration

There are two types of slot configurations: downlink user packet channel and uplink user packet channel. The scramble function is always Off.

Р	CAC		SW	CC	CAC	E	
2	112		20	8	112	22	
	R:	Guard t	ime for burs	t transi	-		
	P:	Preamb	le		$2_{ m H}$ (2 bits)		
	CAC: Control		ntrol signals (UPCH)		PN9 pseudo random	PN9 pseudo random pattern	
					(continuous between		
					transmitted slots)		
	SW:	Sync wo	ord		Slot $0 = 87A4B_{\rm H}$ (20 k	oits)	
					Slot 1 = $9D236_{H}$ (20 b	oits)	
					$Slot 2 = 81D75_{H} (20 b)$	oits)	
	CC:	Color co	de		$00_{ m H}$ (8 bits)		
	E:	Collision	n control bits	3	3FFFFF _H (2	2 bits)	
	P 2	P CAC 2 112 R: P: CAC: SW: CC:	P CAC 2 112 R: Guard t P: Preamb CAC: Control SW: Sync wood CC: Color col	P CAC SW 2 112 20 R: Guard time for burs P: Preamble CAC: Control signals (UP) SW: Sync word CC: Color code	P CAC SW CC 2 112 20 8 R: Guard time for burst transi P: Preamble CAC: Control signals (UPCH) SW: Sync word CC: Color code	PCACSWCCCAC2112208112R:Guard time for burst transient response 0_H (4 bits)P:Preamble 2_H (2 bits)CAC:Control signals (UPCH)PN9 pseudo random p (continuous between transmitted slots)SW:Sync wordSlot 0 = 87A4B_H (20 B Slot 1 = 9D236_H (20 B) Slot 2 = 81D75_H (20 B) OO_H (8 bits)	

Downlink user packet channel (DOWN UPCH)

Uplink user packet channel (UP UPCH)

R	P	CAC	SW	CC	CAC	G
4	2	112	20	8	116	18
		R: Guard t	ime for burs	t transi	ent response 0 _H (4 bits)	

D:	Preamble	$2_{\rm H}$ (2 bits)
CAC:	Control signals (UPCH)	PN9 pseudo random pattern
		(continuous between
		transmitted slots)
SW:	Sync word	Slot $0 = 785B4_{H}$ (20 bits)
CC:	Color code	$00_{\rm H}$ (8 bits)
G:	Guard time	$00000_{ m H}$ (18 bits)

3.4 PHS Waveform Pattern

As the PHS waveform pattern, continuous waveform patterns for uplink/downlink TCH and interference signals are provided as shown in Table 3.4-1.

Waveform Pattern Name	Uplink/Downlink	Scramble	Output Slot
PI_4_DQPSK_PN9	-	OFF	Unframed
PI_4_DQPSK_PN15	—	OFF	Unframed
PI_4_DQPSK_ALL0	—	OFF	Unframed
DL_TCH_Slot_1	Downlink	OFF	Slot 1 only
UL_TCH_Slot_1	Uplink	OFF	Slot 1 only
CW	-	-	-

Table 3.4-1 List of PHS waveform patterns

When a PHS waveform pattern is output, a marker signal shown in Table 3.4-2 is output from the AUX I/O connector on the rear panel of the MG3700A.

Marker Signal	Output Data
Marker 1	Frame Clock
Marker 2	RF Gate
Marker 3	Symbol Clock
RMS for single phase of IQ	1634
IQ output level	$\sqrt{I^2 + Q^2} = 453 \text{ mV}$

Transfer and selection of an additional waveform pattern that is generated by adding two signals, such as a desired signal + an interference signal, and using two memories, can be operated easily by selecting a combination file listed in Table 3.4-3 below when the MG3700A is in the Defined mode.

Combination File Name	Comment
PHS_BS_ACS_0_6MHz	For base station adjacent channel selectivity test
	UL_TCH_Slot_1+PI_4_DQPSK_PN15 (600 kHz offset)
PHS_BS_ACS_0_9MHz	For base station adjacent channel selectivity test
	UL_TCH_Slot_1+PI_4_DQPSK_PN15 (900 kHz offset)
PHS_BS_IMD	For base station intermodulation characteristics test
	UL_TCH_Slot_1+CW (1.2 MHz offset) *1
PHS_UE_ACS_0_6MHz	For mobile station adjacent channel selectivity test
	DL_TCH_Slot_1+PI_4_DQPSK_PN15 (600 kHz offset)
PHS_UE_ACS_0_9MHz	For mobile station adjacent channel selectivity test
	DL_TCH_Slot_1+PI_4_DQPSK_PN15 (900 kHz offset)
PHS_UE_IMD	For mobile station intermodulation characteristics test
	DL_TCH_Slot_1+CW (1.2 MHz offset) *1

Table 3.4-3 List of combination files for PHS reception evaluation

*1: The high-frequency signal generator 1 (modulated desired signal) and the high-frequency signal generator 3 (CW interference signal) are used in combination. When executing an intermodulation characteristics test, it must be externally added with a CW signal (high-frequency signal generator 2) with 600-kHz offset that is generated by another CW signal generator.

3.4.1 Frame configuration

Each PHS frame is composed of four uplink slots and four downlink slots (eight slots in total), and data is generated cyclically based on one PHS frame. Only Slot 1 is transmitted, and subsequent Slots 2 through 4 are not transmitted (transmission off). A PN9 pseudo random pattern in the TCH field of each slot is independent within the slot has continuity between frames.

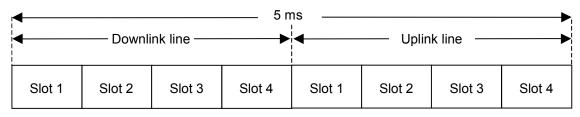


Figure 3.4.1-1 PHS frame configuration

In a waveform pattern other than PI_4_DQPSK_PN9, PI_4_DQPSK_ PN15 and PI_4_DQPSK_ALL0, a communication channel is allocated to uplink or downlink Slot 1. Other slots are burst off output.

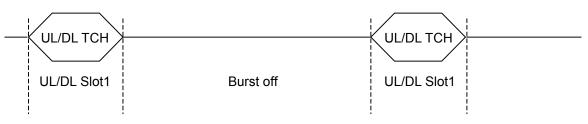


Figure 3.4.1-2 Output of waveform pattern other than PI_4_DQPSK_PN9/15/ALL0

3.4.2 Slot configuration

There are two types of slot configurations: downlink traffic channel and uplink traffic channel. The scramble function is always Off.

		Opinitive		tranic t	manner					
R	SS	PR	UW	CI	SA			CRC	G	
4	2	6	16	4	16	1	60	16	16	
		R:	Ramp	time fo	or transie	nt response	$0_{ m H}$ (4 bits)			
		SS:	Start	symbol			$2_{\rm H}$ (2 bits)			
		\mathbf{PR}	Pream	Preamble 19 _H (6 bits)						
		UW:	Sync v	Sync word Uplink =				$2149_{ m H}$ (16 bits)		
							Downlink = 3	$D4C_{\rm H}$ (1	6 bits)	
		CI:	Chanr	nel ider	ntification		0 _H (4 bits)			
		SA:	SACC	Н			8000 _H (16 bit	s)		
		TCH:	Inform	Information channel			PN9 pseudo random pattern			
							independent	in each s	lot (PN	
							pattern is continuous in			
							TCH of a slot).		
		CRC:	Cyclic	redun	dancy che	ck code	CRC bits for	CI, SA, T	CH	
		G:	Guard	l time f	or transie	nt response	$0000_{\rm H}$ (16 bit	s)		

Uplink/downlink traffic channel

3.5 GSM Waveform Pattern

As the GSM waveform pattern, waveform patterns for uplink/downlink are provided as shown in Table 3.5-1.

Waveform Pattern Name	Uplink/Downlink	Data	Output Slot
GMSK_PN9	Uplink/Downlink	PN9 (*1)	-
8PSK_PN9	Uplink/Downlink		-
GMSK_TN0	Uplink/Downlink	PN9 (*2)	TN0
8PSK_TN0	Uplink/Downlink		TN0
NB_GMSK	Uplink/Downlink	PN9 (*3)	TN0
NB_ALL_GMSK	Uplink/Downlink		All slots
NB_8PSK	Uplink/Downlink		TN0
NB_ALL_8PSK	Uplink/Downlink		All slots
TCH_FS	Uplink/Downlink	PN9 (*4)	TN0
CS-1_1SLOT	Uplink/Downlink		TN0
CS-4_1SLOT	Uplink/Downlink		TN0
DL_MCS-1_1SLOT	Downlink		TN0
UL_MCS-1_1SLOT	Uplink		TN0
DL_MCS-5_1SLOT	Downlink		TN0
UL_MCS-5_1SLOT	Uplink		TN0
DL_MCS-9_1SLOT	Downlink		TN0
UL_MCS-9_1SLOT	Uplink]	TN0
DL_MCS-9_4SLOT	Downlink]	TN0, 1, 2, 3
UL_MCS-9_4SLOT	Uplink		TN0, 1, 2, 3

Table 3.5-1 List of GSM waveform patterns

- *1: PN9 data is inserted to all the non-slot format fields.
- *2: PN9 data is inserted to all the fields in a slot except the guard.
- *3: PN9 data is inserted to the encrypted bit fields of normal burst.
- *4: A bit sequence generated by channel-coding the PN9 data is inserted to the encrypted bit fields of normal burst.

When a GSM waveform pattern is output, a marker signal shown in Table 3.5-2 is output from the AUX I/O connector on the rear panel of the MG3700A.

 Table 3.5-2
 Marker output data and IQ output level

Marker Signal	Output Data
Marker 1	Frame Clock
Marker 2	RF Gate
Marker 3	Multi-Frame Clock
RMS for single phase of IQ	1634
IQ output level	$\sqrt{I^2 + Q^2} = 453 \text{ mV}$

3.5.1 Details of each pattern

♦ GMSK_PN9, PSK_PN9

PN9 data which dosen't have slot format is inserted.

♦ GMSK_TN0, 8PSK_TN0

PN9 data is inserted to all the fields in a slot except the guard field. The PN9 data in each slot has continuity.

♦ NB_GMSK, NB_ALL_GMSK, NB_8PSK, NB_ALL_8PSK

PN9 data is inserted to the encrypted bit fields of normal burst. The PN9 data in each slot has continuity.

♦ TCH_FS

Supports Speech channel at full rate (TCH/FS) prescribed in 3GPP TS05.03 Section 3.1.

The table below shows channel coding parameters:

Type of Channel	Bits/Block Data + Parity + Tail1		Coded Bits per Block	Interleaving Depth
TCH/FS			456	8
class I	182 + 3 + 4	1/2	378	
class II	78 + 0 + 0	—	78	

♦ CS-1(4)_1SLOT

Supports Packet data block type 1 (CS-4), 4 (CS-1) of GPRS PDTCH prescribed in 3GPP TS05.03 Section 5.1.

The table below shows channel coding parameters:

Scheme	Code Rate	USF	Pre-coded USF	Radio Block excl. USF and BCS	BCS	Tail	Coded Bits	Punctured Bits
CS-1	1/2	3	3	181	40	4	456	0
CS-4	1	3	12	428	16	-	456	_

♦ DL(UL)_MCS-1(5, 9)_1SLOT(_4SLOT)

Supports Packet data block type 5 (MCS-1), 9 (MCS-5), and 13 (MCS-9) of EGPRS PDTCH prescribed in 3GPP TS05.03 Section 5.1. The table below shows channel coding parameters:

Scheme	Code Rate	Header Code Rate (Note)	Modulation	RLC Blocks per Radio Block (20 ms)	Raw Data within One Radio Block	Family	BCS	Tail Payload	HCS	Data Rate kb/s
MCS-9	1.0	0.36	8PSK	2	2x592	А	2x12	2x6		59.2
MCS-5	0.37	1/3	orsk	1	448	В	12	C	8	22.4
MCS-1	0.53	0.53	GMSK	1	176	С	12	6		8.8

Note:

The Header data is all "0."

3.5.2 Frame configuration

Each frame is composed of eight slots. TCH/FS consist of 26 multiframes, and other channels consist of 52 multiframes.

3.5.3 Slot configuration

• GMSK_TN0 and 8PSK_TN0 consist of the data field and guard field only as shown in the figures below:

	PN 148		G 8.25
			Unit: bit
PN:	Data	PN9 pseudo random pattern (between transmitted slots)	continuous
G:	Guard bit	$\mathbf{FF}_{\mathbf{H}}$	
	PN 444		G 24.75
			Unit: bit
PN:	Data	PN9 pseudo random pattern (between transmitted slots)	continuous
G:	Guard bit	\mathbf{FF}_{H}	
◆ Th	ne slot configuration	n for those other than GMSK_PN9, 8	PSK_PN9,

• The slot configuration for those other than GMSK_PN9, 8PSK_PN9, GMSK_TN0, and 8PSK_TN0 is normal burst as shown in the figure below:

Normal burst (GMSK)

				0. (0						
Т		E		S	TSC		5	E	Т	G
3	57 1 26				1	57	3	8.25		
									ļ	Unit: bit
		T:	Tail bit			$0_{\rm H} (4)$	bit	s)		
		E: Encrypted		ted bi	it	Channel-coded (see Note) PN9 pseudo			do	
					random pattern (continuous between					
						trans	mit	ted slots)		
		\mathbf{S} :	Stealin	g bit		Steal	fla	g		
		TSC: Training seque		uence bit	$097~0897_{\rm H}$					
		T: Tail bit		0 _H (4	bit	s)				
		G:	Guard	bit		$\mathbf{F}\mathbf{F}_{\mathrm{H}}$				

3.5 GSM Waveform Pattern

	No	ormal bu	urst (8PSK)				
T1 9	E 174		TSC 78		E 174	T2 9	G 24.75
							Unit: bit
	T1: Tail bit E: Encrypt		t pted bit	Cha ranc	_H (9 bits) nnel-coded (see Note) PNS lom pattern (continuous b smitted slots)	-	
	TSC: T2: G:				F 9E29 FFF3 FF3F 9E49 _F _H (9 bits)	I	

Note:

When the waveform pattern is NB, PN9 data that has not been channel-coded is inserted directly.

3.6 CDMA2000 1X Waveform Pattern

As the CDMA2000 1X waveform pattern, waveform patterns shown in Table 3.6-1 are provided.

Waveform Pattern Name	Supported System	Frame Coding	Output Slot
RVS_RC1_FCH	cdma2000 1xRTT RC1 Reverse	Applicable	FCH 9.6 kbps
RVS_RC2_FCH	cdma2000 1xRTT RC2 Reverse	Applicable	FCH 14.4 kbps
RVS_RC3_FCH	cdma2000 1xRTT RC3 Reverse	Applicable	PICH FCH 9.6 kbps
RVS_RC3_FCH_SCH	cdma2000 1xRTT RC3 Reverse	Applicable	PICH FCH 9.6 kbps SCH 9.6 kbps
RVS_RC3_DCCH	cdma2000 1xRTT RC3 Reverse	Applicable	PICH DCCH 9.6 kbps
RVS_RC4_FCH	cdma2000 1xRTT RC4 Reverse	Applicable	PICH FCH 14.4 kbps
FWD_RC1-2_9channel	cdma2000 1xRTT RC1, RC2 Forward	Spreading only	PICH, SyncCH, PagingCH, FCH 19.2 ksps x 6
FWD_RC3-5_9channel	cdma2000 1xRTT RC3, RC4, RC5 Forward	Spreading only	PICH, SyncCH, PagingCH, FCH 38.4 ksps x 6

Table 3.6-1 List of CDMA2000 1X waveform patterns

When a CDMA2000 1X waveform pattern is output, a marker signal shown in Table 3.6-2 is output from the AUX I/O connector on the rear panel of the MG3700A.

	Table 3.6-2	Marker output data and IQ output level
--	-------------	--

Marker Signal	Output Data
Marker 1	Frame Clock
Marker 2	RF Gate
Marker 3	Symbol Clock
RMS for single phase of IQ	1157
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$
AWGN addition (Note)	Enable

Note:

Use a waveform pattern AWGN_1_23MHz_x2 or AWGN_1_23MHz _x1_5 for AWGN. The sampling rate for the waveform pattern must be set to 1.2288 MHz \times 4 when adding waveform patterns.

Refer to Section 3.5.2 (3) "Adding Memories A and B outputs for modulation" in the MG3700A Operation Manual (Mainframe) for details of the AWGN addition method.

3.6.1 1xRTT Reverse RC1 (RVS_RC1_FCH)

When this waveform pattern is selected, a frame-coded R-FCH signal accommodating 1xRTT Reverse RC1 is output. The frame coding and IQ modulation conform to 3GPP2 C.S0002-C-1. Table 3.6.1-1 shows the output signal parameter.

		lental Channel)
	Data Rate	Data
R-FCH	9.6 kbps	PN9fix*

Table 3.6.1-1 R-FCH (Reverse Fundamental Channel)

The frame coding illustrated in the functional diagram of Figure 3.6.1-2 is executed for the signals that are output by selecting this waveform pattern. The frame coding is continuously executed for four frames (it takes about 20 ms to output one frame), and a 4-frame length signal pattern obtained by executing the frame coding is output repeatedly. Since the total length of three cycles of I Channel PN Sequence and Q Channel PN Sequence, which are used for the short-code spreading, is 80 ms and equals to the length of four frames, the short code holds the continuity during signal output. Therefore, the signals output by selecting this waveform pattern are usable for modulation accuracy measurement and FER (Frame Error Rate) measurement with CRC. The long-code spreading is not processed.

Figure 3.6.1-1 shows the assignment of bit sequences before executing convolutional coding.

PN9fix [*] (172 bits)	Frame Quality Indicator (12 bits)	Encoder Tail Bits ("00000000")
--------------------------------	--	--------------------------------------

Figure 3.6.1-1 Frame configuration of waveform pattern RVS_RC1_FCH

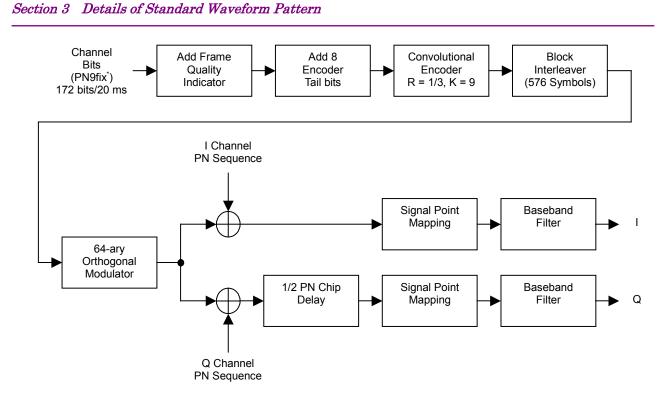


Figure 3.6.1-2 Signal generation block diagram of waveform pattern RVS_RC1_FCH

*: 4-frame length data, which is generated by initializing the PN9 generator for each 4 frames, is output repeatedly as shown in Figure 3.6.1-3 below. This is why the continuity of PN9fix is held within the four frames, but the continuity with other four frames is lost.

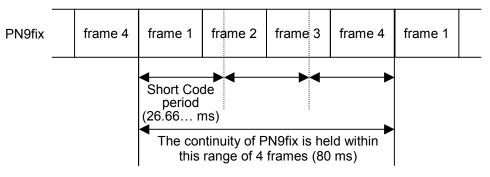


Figure 3.6.1-3 PN9fix data and short code

3.6.2 1xRTT Reverse RC2 (RVS_RC2_FCH)

When this waveform pattern is selected, a frame-coded R-FCH signal accommodating 1xRTT Reverse RC2 is output. The frame coding and IQ modulation conform to 3GPP2 C.S0002-C-1. Table 3.6.2-1 shows the output signal parameter.

Table 3.6.2-1	R-FCH (Reverse Fundamental Channel)

	Data Rate	Data
R-FCH	14.4 kbps	PN9fix*

The frame coding illustrated in the functional diagram of Figure 3.6.2-2 is executed for the signals that are output by selecting this waveform pattern. The frame coding is continuously executed for four frames (it takes about 20 ms to output one frame), and a 4-frame length signal pattern obtained by executing the frame coding is output repeatedly. Since the total length of three cycles of I Channel PN Sequence and Q Channel PN Sequence, which are used for the short-code spreading, is 80 ms and equals to the length of four frames, the short code holds the continuity during signal output. Therefore, the signals output by selecting this waveform pattern are usable for modulation accuracy measurement and FER (Frame Error Rate) measurement with CRC. The long-code spreading is not processed.

Figure 3.6.2-1 shows the assignment of bit sequences before executing convolutional coding.

Erasure Indicator Bit ("0")	PN9fix [*] (267 bits)	Frame Quality Indicator (12 bits)	Encoder Tail Bits ("00000000")
--------------------------------------	--------------------------------	--	--------------------------------------

Figure 3.6.2-1 Frame configuration of waveform pattern RVS_RC2_FCH

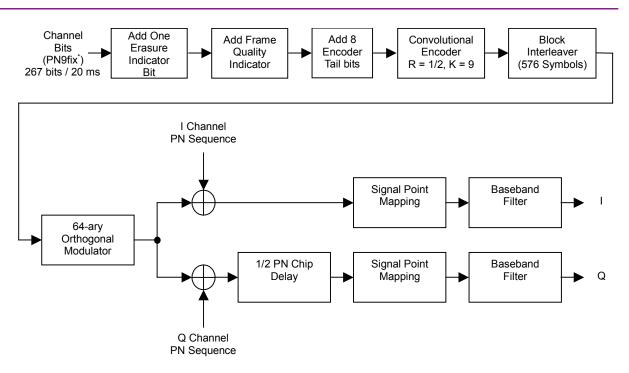


Figure 3.6.2-2 Signal generation block diagram of waveform pattern RVS_RC2_FCH

*: 4-frame length data is output repeatedly because the PN9 generator is initialized for each 4 frames. This is why the continuity of PN9fix is held within the four frames, but the continuity with other four frames is lost.

See Figure 3.6.1-3 "PN9fix data and short code" in Section 3.6.1 for details.

3.6.3 1xRTT Reverse RC3 (1) (RVS_RC3_FCH)

When this waveform pattern is selected, a frame-coded multiplexed signal accommodating 1xRTT Reverse RC3 is output. The frame coding and IQ modulation conform to 3GPP2 C.S0002-C-1. The multiplexed channels are R-PICH and R-FCH. Table 3.6.3-1 shows the output signal parameters.

	Walsh Code	Code Power	Data Rate	Data
R-PICH	0	$-5.278~\mathrm{dB}$	N/A	All "0"
R-FCH	4	$-1.528~\mathrm{dB}$	9.6 kbps	PN9fix*

Table 3.6.3-1R-PICH (Reverse Pilot Channel),R-FCH (Reverse Fundamental Channel)

The frame coding illustrated in the functional diagrams of Figure 3.6.3-2 and 3.6.3-3 is executed for the signals that are output by selecting this waveform pattern. The frame coding is continuously executed for four frames (it takes about 20 ms to output one frame), and a 4-frame length signal pattern obtained by executing the frame coding is output repeatedly. Since the total length of three cycles of I Channel PN Sequence and Q Channel PN Sequence, which are used for the short-code spreading, is 80 ms and equals to the length of four frames, the short code holds the continuity during signal output. Therefore, the signals output by selecting this waveform pattern are usable for modulation accuracy measurement and FER (Frame Error Rate) measurement with CRC. The long-code spreading is not processed.

Figure 3.6.3-1 shows the assignment of bit sequences before executing convolutional coding.

Figure 3.6.3-1 Traffic channel frame configuration of waveform pattern RVS_RC3_FCH

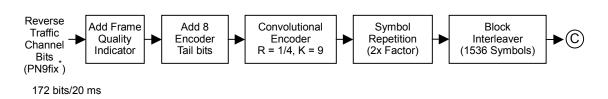
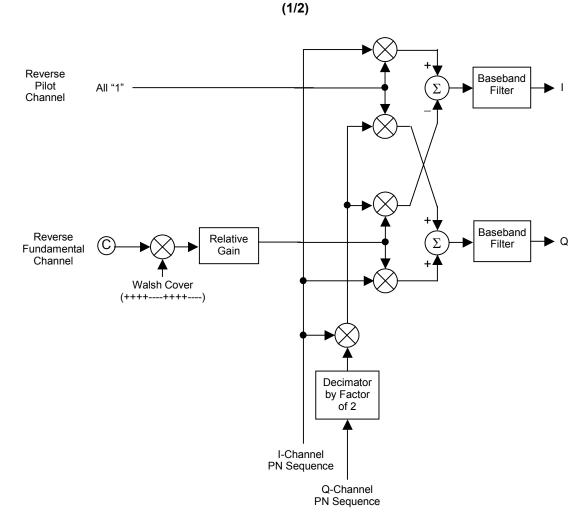
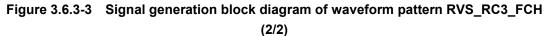




Figure 3.6.3-2 Signal generation block diagram of waveform pattern RVS_RC3_FCH

Note:

Binary numbers "0" and "1" are replaced by 1 and -1, respectively.

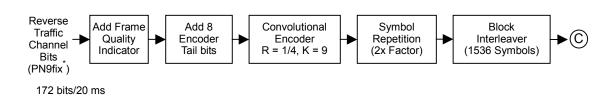
*: 4-frame length data is output repeatedly because the PN9 generator is initialized for each 4 frames. This is why the continuity of PN9fix is held within the four frames, but the continuity with other four frames is lost.

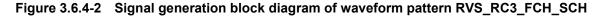
See Figure 3.6.1-3 "PN9fix data and short code" in Section 3.6.1 for details.

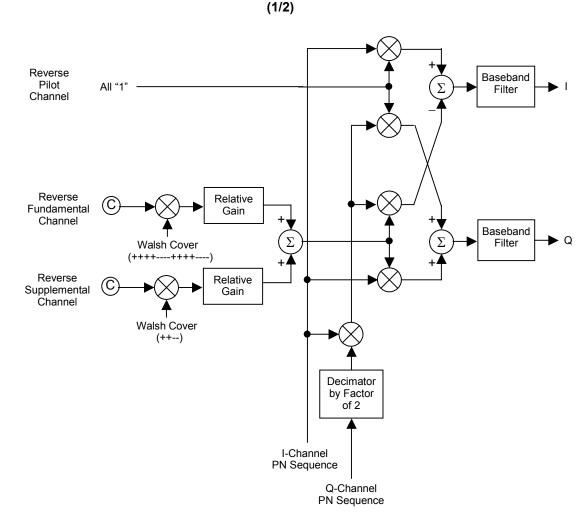
3.6.4 1xRTT Reverse RC3 (2) (RVS RC3 FCH SCH)

When this waveform pattern is selected, a frame-coded multiplexed signal accommodating 1xRTT Reverse RC3 is output. The frame coding and IQ modulation conform to 3GPP2 C.S0002-C-1. The multiplexed channels are R-PICH, R-FCH, and R-SCH. Table 3.6.4-1 shows the output signal parameters.

Т	able 3.6.4-1	R-PICH (Rever	se Pilot Channel),	
	R-FCH (Re	everse Fundame	ental Channel),	
	R-SCH (Re	everse Supplem	ental Channel)	
1				


	Walsh Code	Code Power	Data Rate	Data
R-PICH	0	$-7.5912~\mathrm{dB}$	N/A	All "0"
R-FCH	4	$-3.8412~\mathrm{dB}$	9.6 kbps	PN9fix*
R-SCH	2	$-3.8412~\mathrm{dB}$	9.6 kbps	PN9fix*


The frame coding illustrated in the functional diagrams of Figure 3.6.4-2 and 3.6.4-3 is executed for the signals that are output by selecting this waveform pattern. The frame coding is continuously executed for four frames (it takes about 20 ms to output one frame), and a 4-frame length signal pattern obtained by executing the frame coding is output repeatedly. Since the total length of three cycles of I Channel PN Sequence and Q Channel PN Sequence, which are used for the short-code spreading, is 80 ms and equals to the length of four frames, the short code holds the continuity during signal output. Therefore, the signals output by selecting this waveform pattern are usable for modulation accuracy measurement and FER (Frame Error Rate) measurement with CRC. The long-code spreading is not processed.


Figure 3.6.4-1 shows the assignment of bit sequences before executing convolutional coding.

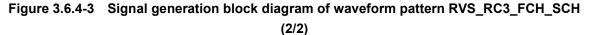

	Frame	Encoder Tail
PN9fix [*] (172 bits)	Quality	Bits
	Indicator	("00000000")
	(12 bits)	. ,

Figure 3.6.4-1 Traffic channel frame configuration of waveform pattern RVS_RC3_FCH_SCH

Note:

Binary numbers "0" and "1" are replaced by 1 and -1, respectively.

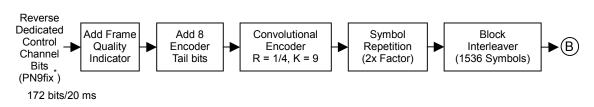
*: 4-frame length data is output repeatedly because the PN9 generator is initialized for each 4 frames. This is why the continuity of PN9fix is held within the four frames, but the continuity with other four frames is lost.

See Figure 3.6.1-3 "PN9fix data and short code" in Section 3.6.1 for details.

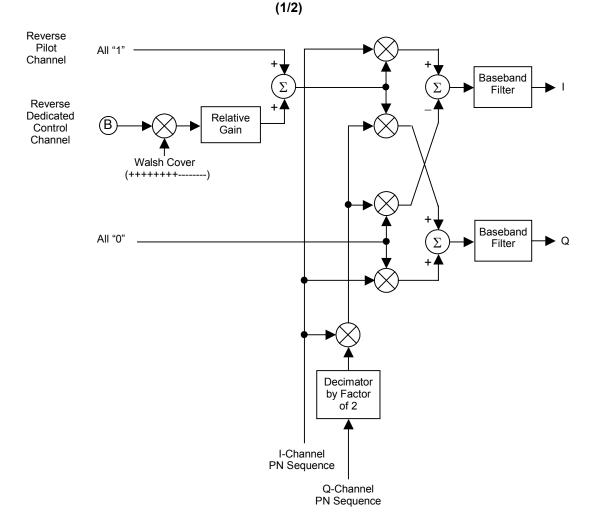
3.6.5 1xRTT Reverse RC3 (3) (RVS_RC3_DCCH)

When this waveform pattern is selected, a frame-coded multiplexed signal accommodating 1xRTT Reverse RC3 is output. The frame coding and IQ modulation conform to 3GPP2 C.S0002-C-1. The multiplexed channels are R-PICH and R-DCCH. Table 3.6.5-1 shows the output signal parameters.

	Walsh Code	Code Power	Data Rate	Data
R-PICH	0	$-5.278~\mathrm{dB}$	N/A	All "0"
R-DCCH	8	$-1.528~\mathrm{dB}$	9.6 kbps	PN9fix*


Table 3.6.5-1R-PICH (Reverse Pilot Channel),R-DCCH (Reverse Dedicated Control Channel)

The frame coding illustrated in the functional diagrams of Figure 3.6.5-2 and 3.6.5-3 is executed for the signals that are output by selecting this waveform pattern. The frame coding is continuously executed for four frames (it takes about 20 ms to output one frame), and a 4-frame length signal pattern obtained by executing the frame coding is output repeatedly. Since the total length of three cycles of I Channel PN Sequence and Q Channel PN Sequence, which are used for the short-code spreading, is 80 ms and equals to the length of four frames, the short code holds the continuity during signal output. Therefore, the signals output by selecting this waveform pattern are usable for modulation accuracy measurement and FER (Frame Error Rate) measurement with CRC. The long-code spreading is not processed.


Figure 3.6.5-1 shows the assignment of bit sequences before executing convolutional coding.

Indicator ("0000000") (12 bits)

Figure 3.6.5-1 Traffic channel frame configuration of waveform pattern RVS_RC3_DCCH

Note:

Binary numbers "0" and "1" are replaced by 1 and -1, respectively.

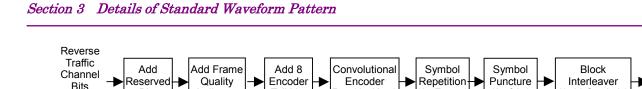
*: 4-frame length data is output repeatedly because the PN9 generator is initialized for each 4 frames. This is why the continuity of PN9fix is held within the four frames, but the continuity with other four frames is lost.

See Figure 3.6.1-3 "PN9fix data and short code" in Section 3.6.1 for details.

3.6.6 1xRTT Reverse RC4 (RVS_RC4_FCH)

When this waveform pattern is selected, a frame-coded multiplexed signal accommodating 1xRTT Reverse RC4 is output. The frame coding and IQ modulation conform to 3GPP2 C.S0002-C-1. The multiplexed channels are R-PICH and R-FCH. Table 3.6.6-1 shows the output signal parameters.

	Walsh Code	Code Power	Data Rate	Data
R-PICH	0	$-5.278~\mathrm{dB}$	N/A	All "0"
R-FCH	4	$-1.528~\mathrm{dB}$	14.4 kbps	PN9fix*


Table 3.6.6-1R-PICH (Reverse Pilot Channel),R-FCH (Reverse Fundamental Channel)

The frame coding illustrated in the functional diagrams of Figure 3.6.6-2 and 3.6.6-3 is executed for the signals that are output by selecting this waveform pattern. The frame coding is continuously executed for four frames (it takes about 20 ms to output one frame), and a 4-frame length signal pattern obtained by executing the frame coding is output repeatedly. Since the total length of three cycles of I Channel PN Sequence and Q Channel PN Sequence, which are used for the short-code spreading, is 80 ms and equals to the length of four frames, the short code holds the continuity during signal output. Therefore, the signals output by selecting this waveform pattern are usable for modulation accuracy measurement and FER (Frame Error Rate) measurement with CRC. The long-code spreading is not processed.

Figure 3.6.6-1 shows the assignment of bit sequences before executing convolutional coding.

Reserved Bit ("0")	PN9fix [*] (267 bits)	Frame Quality Indicator (12 bits)	Encoder Tail Bits ("00000000")
--------------------------	--------------------------------	--	--------------------------------------

Figure 3.6.6-1 Traffic channel frame configuration of waveform pattern RVS_RC4_FCH

Tail bits

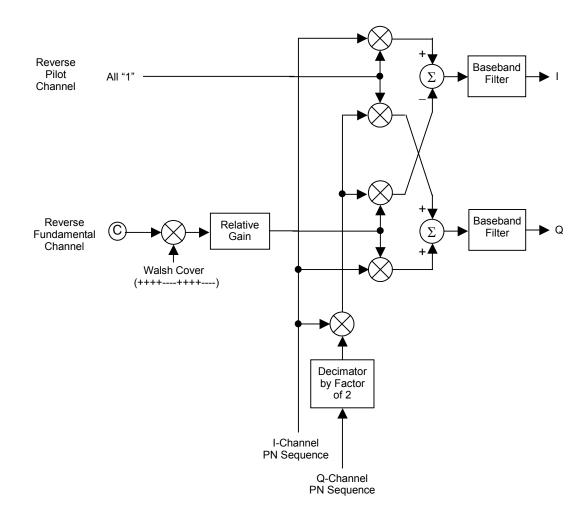
267 bits/20 ms

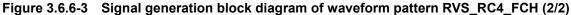
(PN9fix^{*})

Bits

Indicator

Figure 3.6.6-2 Signal generation block diagram of waveform pattern RVS_RC4_FCH (1/2)


R = 1/4, K = 9


(2x Factor)

(8 of 24)

(C

(1536 Symbols)

Note:

Binary numbers "0" and "1" are replaced by 1 and -1, respectively.

*: 4-frame length data is output repeatedly because the PN9 generator is initialized for each 4 frames. This is why the continuity of PN9fix is held within the four frames, but the continuity with other four frames is lost.

See Figure 3.6.1-3 "PN9fix data and short code" in Section 3.6.1 for details.

3.6.7 1xRTT Forward RC1, 2 (FWD_RC1-2 9channel)

When this waveform pattern is selected, a multiplexed signal accommodating 1xRTT Forward RC1, RC2 that conform to 3GPP2 C.S0002-C-1 is output. The multiplexed channels are F-PICH, F-SyncCH, PagingCH, and F-FCH x 6 (data sequence generated by spreading six symbol data sequences according to spreading code of Walsh Code 8, 9, ..., 13). Table 3.6.7-1 shows the multiplexed channel parameters.

Table 3.6.7-1 F-PICH (Forward Pilot Channel), F-SyncCH (Forward Sync Channel), PagingCH (Paging Channel), F-FCH (Forward Fundamental Channel)

	Walsh Code	Code Power	Symbol Rate	Symbol Data
F-PICH	0	-7.0 dB	N/A	All "0"
F-SyncCH	32	−13.3 dB	$4.8 \mathrm{~ksps}$	PN9fix*
PagingCH	1	$-7.3~\mathrm{dB}$	19.2 ksps	PN9fix*
F-FCH x 6	8 to 13	–10.3 dB	$19.2 \ \mathrm{ksps}$	PN9fix*

The processing illustrated in the functional diagram of Figure 3.6.7-1 is executed for the signals that are output by selecting this waveform pattern. The convolutional coding and interleaving are not processed. This functional diagram should be applied to each channel, and the symbol data of the channels are separately processed as indicated in this functional diagram and then added each other. The frame coding is continuously executed for four frames (it takes about 20 ms to output one frame), and a 4-frame length signal pattern obtained by executing the frame coding is output repeatedly. Since the total length of three cycles of I Channel PN Sequence and Q Channel PN Sequence, which are used for the short-code spreading, is 80 ms and equals to the length of four frames, the short code holds the continuity during signal output. Therefore, the signals output by selecting this waveform pattern are usable for modulation accuracy measurement and FER (Frame Error Rate) measurement with CRC. The long-code scrambling and PCB Mux are not processed.

Section 3 Details of Standard Waveform Pattern

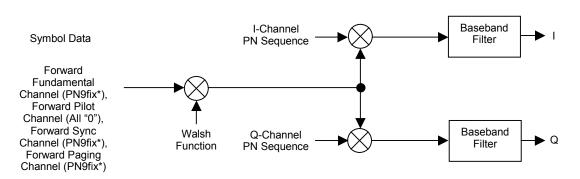


Figure 3.6.7-1 Signal generation block diagram of waveform pattern FWD_RC1-2 9channel

Note:

Binary numbers "0" and "1" are replaced by 1 and -1, respectively.

*: 4-frame length data is output repeatedly because the PN9 generator is initialized for each 4 frames. This is why the continuity of PN9fix is held within the four frames, but the continuity with other four frames is lost.

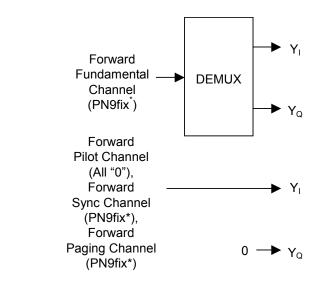
See Figure 3.6.1-3 "PN9fix data and short code" in Section 3.6.1 for details.

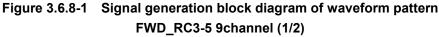
3.6.8 1xRTT Forward RC3, 4, 5 (FWD_RC3-5 9channel)

When this waveform pattern is selected, a multiplexed signal accommodating 1xRTT Forward RC3, RC4, RC5 that conform to 3GPP2 C.S0002-C-1 is output. The multiplexed channels are F-PICH, F-SyncCH, PagingCH, and F-FCH x 6 (data sequence generated by spreading six symbol data sequences according to spreading code of Walsh Code8, 9, ..., 13). Table 3.6.7-1 shows the multiplexed channel parameters.

 F-SyncCH (Forward Sync Channel), PagingCH (Paging Channel),

 F-FCH (Forward Fundamental Channel)


 Walsh Code
 Code Power
 Symbol Rate
 Symbol Date


Table 3.6.8-1 F-PICH (Forward Pilot Channel),

	Walsh Code	Code Power	Symbol Rate	Symbol Data
F-PICH	0	-7.0 dB	N/A	All "0"
F-SyncCH	32	$-13.3~\mathrm{dB}$	$4.8 \mathrm{~ksps}$	PN9fix*
PagingCH	1	$-7.3~\mathrm{dB}$	19.2 ksps	PN9fix*
F-FCH x 6	8 to 13	–10.3 dB	$38.4 \mathrm{~ksps}$	PN9fix*

The processing illustrated in the functional diagrams of Figs. 3.6.8-1 and 3.6.8-2 is executed for the signals that are output by selecting this waveform pattern. The convolutional coding and interleaving are not processed. This functional diagram should be applied to each channel, and the symbol data of the channels are separately processed as indicated in this functional diagram and then added each other. The frame coding is continuously executed for four frames (it takes about 20 ms to output one frame), and a 4-frame length signal pattern obtained by executing the frame coding is output repeatedly. Since the total length of three cycles of I Channel PN Sequence and Q Channel PN Sequence, which are used for the short-code spreading, is 80 ms and equals to the length of four frames, the short code holds the continuity during signal output. Therefore, the signals output by selecting this waveform pattern are usable for modulation accuracy measurement and FER (Frame Error Rate) measurement with CRC. The long-code scrambling and PCB Mux are not processed.

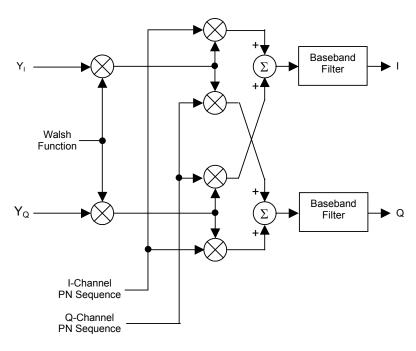


Fig. 3.6.8-2 Signal generation block diagram of waveform pattern FWD_RC3-5 9channel (2/2)

Note:

Binary numbers "0" and "1" are replaced by 1 and -1, respectively.

*: 4-frame length data is output repeatedly because the PN9 generator is initialized for each 4 frames. This is why the continuity of PN9fix is held within the four frames, but the continuity with other four frames is lost. See Figure 3.6.1-3 "PN9fix data and short code" in Section 3.6.1 for details.

3.7 CDMA2000 1xEV-DO Waveform Pattern

As the CDMA2000 1xEV-DO waveform pattern, the following waveform patterns are provided.

FWD_38_4_16slot/.../FWD_2457_6_1slot

When these waveform patterns are selected, CDMA2000 1xEV-DO forward modulated signal for which channel coding, TDM, and IQ mapping are executed according to 3GPP2 C.S0024 is output.

FWD_ldle

When this waveform pattern is selected, CDMA2000 1xEV-DO forward idle slot modulated signal for which TDM and IQ mapping are executed according to 3GPP2 C.S0024 is output.

RVS_9_6_kbps_RX/.../RVS_153_6_kbps_RX

When these waveform patterns are selected, CDMA2000 1xEV-DO reverse modulated signal for which channel coding and IQ mapping are executed according to 3GPP2 C.S0024 is output.

Table 3.7-1 lists the CDMA2000 1xEV-DO waveform patterns.

1xEV-DO Waveform Pattern	Supported System	Baseband Filter	Data
FWD_38_4kbps_16slot	CDMA2000 1xEV-DO Forward	IS-95SPEC+EQ	
FWD_76_8kbps_8slot	CDMA2000 1xEV-DO Forward	I IS-95SPEC+EQ	
FWD_153_6kbps_4slot	CDMA2000 1xEV-DO Forward	IS-95SPEC+EQ	
FWD_307_2kbps_2slot	CDMA2000 1xEV-DO Forward	IS-95SPEC+EQ	
$FWD_614_4kbps_1slot$	CDMA2000 1xEV-DO Forward IS-95SPEC+EQ		PN15fix*
$FWD_{307}_{2kbps}_{4slot}$	CDMA2000 1xEV-DO Forward	IS-95SPEC+EQ	PN15fix*
$FWD_614_4kbps_2slot$	CDMA2000 1xEV-DO Forward	IS-95SPEC+EQ	PN15fix*
FWD_1228_8kbps_1slot	CDMA2000 1xEV-DO Forward	IS-95SPEC+EQ	PN15fix*
FWD_921_6kbps_2slot	CDMA2000 1xEV-DO Forward	IS-95SPEC+EQ	PN15fix*
FWD_1843_2kbps_1slot	CDMA2000 1xEV-DO Forward	IS-95SPEC+EQ	PN15fix*

Table 3.7-1 List of CDMA2000 1xEV-DO waveform patterns (1/2)

1xEV-DO Waveform Pattern	Supported System	Baseband Filter	Data				
FWD_1228_8kbps_2slot	CDMA2000 1xEV-DO Forward						
FWD_2457_6kbps_1slot	CDMA2000 1xEV-DO Forward IS-95SPEC+EQ		PN15fix*				
FWD_Idle	CDMA2000 1xEV-DO Forward	IS-95SPEC+EQ	_				
RVS_9_6kbps_RX	CDMA2000 1xEV-DO Reverse	IS-95SPEC	PN9fix*				
RVS_19_2kbps_RX	CDMA2000 1xEV-DO Reverse	IS-95SPEC	PN9fix*				
RVS_38_4kbps_RX	CDMA2000 1xEV-DO Reverse	IS-95SPEC	PN9fix*				
RVS_76_8kbps_RX	CDMA2000 1xEV-DO Reverse	IS-95SPEC	PN9fix*				
RVS_153_6kbps_RX	CDMA2000 1xEV-DO Reverse	IS-95SPEC	PN9fix*				
RVS_9_6kbps_TX	CDMA2000 1xEV-DO Reverse	IS-95SPEC	PN9fix*				
RVS_19_2kbps_TX	CDMA2000 1xEV-DO Reverse	IS-95SPEC	PN9fix*				
RVS_38_4kbps_TX	CDMA2000 1xEV-DO Reverse	IS-95SPEC	PN9fix*				
RVS_76_8kbps_TX	CDMA2000 1xEV-DO Reverse	IS-95SPEC	PN9fix*				
RVS_153_6kbps_TX	CDMA2000 1xEV-DO Reverse	IS-95SPEC	PN9fix*				

Table 3.7-1	List of CDMA2000 1xEV-DO waveform patterns (2/2	2)
-------------	---	----

*: Indicates the PN sequence that was extracted for each packet. Therefore, the PN sequence is not continuous between the last data of a packet and the first data of the next packet.

When a CDMA2000 1xEV-DO waveform pattern is output, a marker signal shown in Table 3.7-2 is output from the AUX I/O connector on the rear panel of the MG3700A.

Marker Signal	Output Data				
Marker 1	Frame Clock				
Marker 2	RF Gate				
Marker 3	Symbol Clock				
RMS for single phase of IQ	1157				
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$				
AWGN addition (Note)	Enable				

 Table 3.7-2
 Marker output data and IQ output level

Note:

Use a waveform pattern AWGN_1_23MHz_x2 or AWGN_1_23MHz _x1_5 for AWGN. The sampling rate for the waveform pattern must be set to 1.2288 MHz \times 4 when adding waveform patterns.

Refer to Section 3.5.2 (3) "Adding Memories A and B outputs for modulation" in the MG3700A Operation Manual (Mainframe) for details of the AWGN addition method.

3.7.1 1xEV-DO forward (excluding FWD_Idle)

When a waveform pattern from FWD_38_4kbps_16slot to FWD_245_7kbps_6_1slot is selected, a CDMA2000 1xEV-DO forward modulated signal for which channel coding and IQ mapping are executed according to 3GPP2 C.S0024 is output. In this output signal, the pilot channel, forward MAC channel, and forward traffic channel are multiplexed. For the forward traffic channel, PN15fix* is used as the data before adding FCS (Frame Check Sequence).

Figure 3.7.1-1 shows the format of PN15fix bit sequence with FCS and TAIL bit sequences added. Hereafter, the PN15fix bit sequence with FCS and TAIL bit sequences added is referred to as "packet".

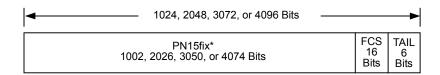
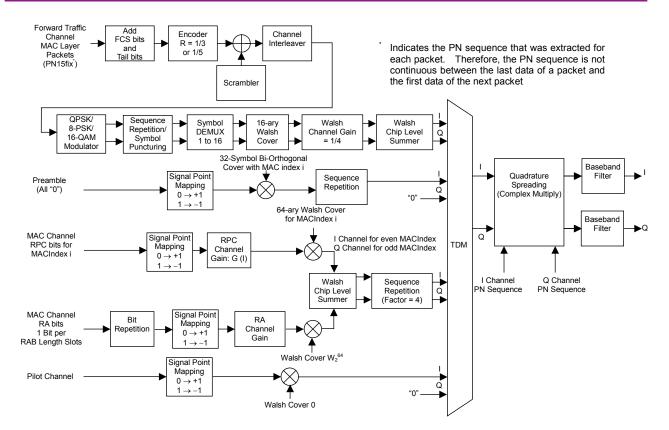
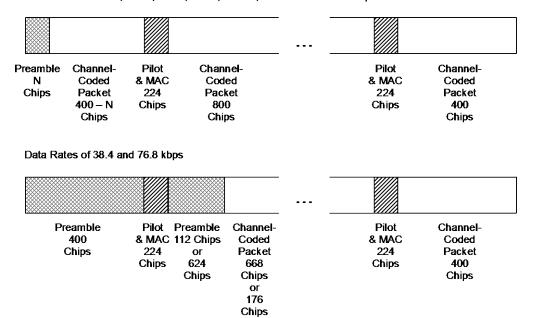


Figure 3.7.1-1 Format of 1xEV-DO forward packet

The channel coding including turbo coding, scrambling, channel interleaving, and modulation (QPSK, 8-PSK, 16QAM) is processed for a packet as shown in Figure 3.7.1-2 Then the packet is multiplexed with other channels by time division (time division multiplexing: TDM) For the MAC index that is used in scrambling, the MAC index value used by the preamble in the same slot is used.

*: Indicates the PN sequence that was extracted for each packet. Therefore, the PN sequence is not continuous between the last data of a packet and the first data of the next packet.




Figure 3.7.1-2 Signal generation block diagram of 1xEV-DO forward waveform pattern

The channel-coded packet is allocated to the data field in the slot along with the preamble that has the same MAC index by time division multiplexing.

Figure 3.7.1-3 shows the slot format, and Figure 3.7.1-4 shows the timing of time division multiplexing of preamble, channel-coded packet, MAC channel, and pilot channel.

Data	MAC	Pilot	MAC	Data	MAC	Pilot	MAC	Data	
400 chips	64 chips	96 chips	64 chips	800 chips	64 chips	96 chips	64 chips	400 chips	
1 slot = 1.67 ms►									

Figure 3.7.1-3 Slot format of 1xEV-DO forward waveform pattern (excluding idle slot)

Data Rates of 153.6, 307.2, 614.4, 921.6, 1228.8, 1843.2 and 2457.6 kbps

Figure 3.7.1-4 TDM timing diagram

Four PN15fix that have a different initial value of the PN15 code generator are generated as the data to be transferred on the forward traffic channel, and a packet is generated from each PN15fix (four packets in total). Then the channel coding is executed for these packets. At this time, different values are applied to each MAC index that is used by the scrambler, according to each packet. The same MAC index value is applied to the packet and preamble if they are allocated to the same slot. See Fig. 3.7.1-5 for MAC index values. A channel-coded packet is allocated to every 4 slots, and another channel-coded packet is allocated to one of the remaining three slots.

Figure 3.7.1-5 shows an example of allocation of forward traffic channels every 4 slots. Table 3.7.1-1 lists the parameters for forward traffic channels.

3.7 CDMA2000 1xEV-DO Waveform Pattern

1xEV-DO Modulated Signal	Data Rate (kbps)	Slot	Packet (Bit)	Preamble (Chip)	Modulation Type
FWD_38_4kbps_16slot	38.4	16	1024	1024	QPSK
$FWD_76_8kbps_8slot$	76.8	8	1024	512	QPSK
FWD_153_6kbps_4slot	153.6	4	1024	256	QPSK
FWD_307_2kbps_2slot	307.2	2	1024	128	QPSK
FWD_614_4kbps_1slot	614.4	1	1024	64	QPSK
FWD_307_2kbps_4slot	307.2	4	2048	128	QPSK
FWD_614_4kbps_2slot	614.4	2	2048	64	QPSK
FWD_1228_8kbps_1slot	1228.8	1	2048	64	QPSK
FWD_921_6kbps_2slot	921.6	2	3072	64	8-PSK
FWD_1843_2kbps_1slot	1843.2	1	3072	64	8-PSK
FWD_1228_8kbps_2slot	1228.8	2	4096	64	16QAM
FWD_2457_6kbps_1slot	2457.6	1	4096	64	16QAM

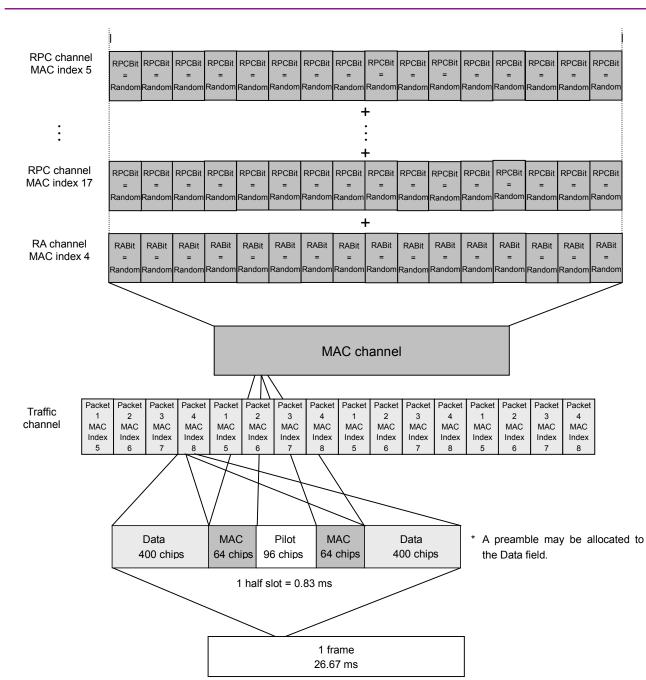

Table 3.7.1-1 List of traffic channel parameters

Table 3.7.1-2 lists the parameter for the MAC channel:

Table 3.7.1-2	List of MAC channel parar	neter
---------------	---------------------------	-------

MAC Index	RABit	RPCBit
4 (RA Channel), 5-17 (RPC Channel)	Random	Random

The RPCBit to be transferred on the RPC channel and the RABit to be transferred on the RA channel of the MAC channel are set at random. There are 13 RPC channels and one RA channel. These MAC channels are spread by the Walsh cover, which is determined depending on the MAC index, and then multiplexed. The MAC channels are allocated to the MAC field in a slot as shown in Figure 3.7.1-3. Figure 3.7.1-5 shows the relationship between the slot and the data transmitted by the MAC channel and traffic channel.

Section 3 Details of Standard Waveform Pattern

Figure 3.7.1-5 Multiplexing channels

3.7.2 1xEV-DO reverse

When a 1xEV-DO modulated signal from RVS_9_6kbps_RX to RVS_153_6kbps_TX is selected, a CDMA2000 1xEV-DO reverse modulated signal for which channel coding and IQ mapping are executed according to 3GPP2 C.S0024 is output. In this output signal, the pilot channel, RRI channel, DRC channel, ACK channel, and data channel are multiplexed. For the data channel, PN9fix* is used as the data before adding FCS (Frame Check Sequence).

Figure 3.7.2-1 shows the format of PN9fix bit sequence with FCS and TAIL bit sequences added.

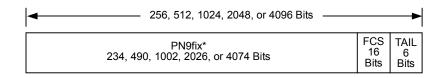
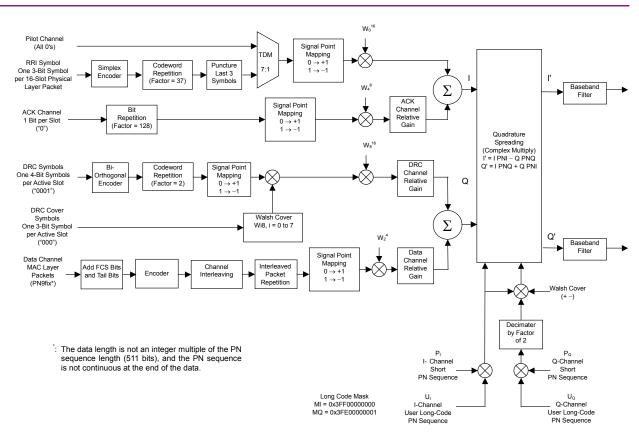



Figure 3.7.2-1 Format of 1xEV-DO reverse packet

The PN9fix bit sequence with FCS and TAIL bit sequences added is channel coded, and then multiplexed with the pilot channel, RRI channel, DRC channel, and ACK channel. Figure 3.7.2-2 shows the block diagram of 1xEV-DO reverse, and Tables 3.7.2-1 and 3.7.2-2 list modulation parameters and channel gains, respectively.

*: The data length is not an integer multiple of the PN sequence length (511 bits), and the PN sequence is not continuous at the end of the data.

Section 3 Details of Standard Waveform Pattern

Figure 3.7.2-2 Signal generation block diagram of 1xEV-DO reverse waveform pattern

1xEV-DO Modulated Signal	Data Rate (kbps)	RRI Symbol	DRC Value	DRC Cover	ACK Channel Bit	Long Code Mask
RVS_9_6kbps_RX	9.6	001	0x01	W_{0^8}	0	
$RVS_{19}_{kbps}RX$	19.2	010	0x01	W_{0^8}	0	
RVS_38_4kbps_RX	38.4	011	0x01	W_{0^8}	0	
RVS_76_8kbps_RX	76.8	100	0x01	W_{0^8}	0	
RVS_153_6kbps_RX	153.6	101	0x01	W_{0^8}	0	MI = 0x3FF00000000
RVS_9_6kbps_TX	9.6	001	0x01	W_{0^8}	0	MQ = 0x3FE00000001
RVS_19_2kbps_TX	19.2	010	0x01	W_{0^8}	0	
RVS_38_4kbps_TX	38.4	011	0x01	W_{0^8}	0	
RVS_76_8kbps_TX	76.8	100	0x01	W_{0^8}	0	
RVS_153_6kbps_TX	153.6	101	0x01	W_0^8	0	

 Table 3.7.2-1
 List of modulation parameters for 1xEV-DO reverse waveform pattern

3.7 CDMA2000 1xEV-DO Waveform Pattern

1xEV-DO Modulated Signal	Data Rate (kbps)	Data/Pilot	RRI/Pilot	DRC/Pilot	ACK/Pilot
RVS_9_6kbps_RX	9.6	$3.75~\mathrm{dB}$	0 dB	3.0 dB	0.0 dB
RVS_19_2kbps_RX	19.2	$6.75~\mathrm{dB}$	0 dB	3.0 dB	0.0 dB
RVS_38_4kbps_RX	38.4	$9.75~\mathrm{dB}$	0 dB	3.0 dB	0.0 dB
RVS_76_8kbps_RX	76.8	$13.25~\mathrm{dB}$	0 dB	3.0 dB	0.0 dB
RVS_153_6kbps_RX	153.6	$18.50~\mathrm{dB}$	0 dB	3.0 dB	0.0 dB
RVS_9.6 kbps_TX	9.6	$3.75~\mathrm{dB}$	0 dB	3.0 dB	3.0 dB
RVS_19.2 kbps_TX	19.2	$6.75~\mathrm{dB}$	0 dB	3.0 dB	3.0 dB
RVS_38.4 kbps_TX	38.4	9.75 dB	0 dB	3.0 dB	3.0 dB
RVS_76.8 kbps_TX	76.8	$13.25~\mathrm{dB}$	0 dB	3.0 dB	3.0 dB
RVS_153.6 kbps_TX	153.6	18.50 dB	0 dB	3.0 dB	3.0 dB

 Table 3.7.2-2
 List of channel gains for 1xEV-DO reverse waveform pattern

3.7.3 1xEV-DO forward idle slot

When the FWD_Idle waveform pattern is selected, a modulated signal with the CDMA2000 1xEV-DO forward idle slot configuration for which channel coding and IQ mapping are executed according to 3GPP2 C.S0024 is output. In this output signal, the pilot channel and forward MAC channel are multiplexed. Figure 3.7.3-1 shows the block diagram of 1xEV-DO forward idle slot waveform pattern.

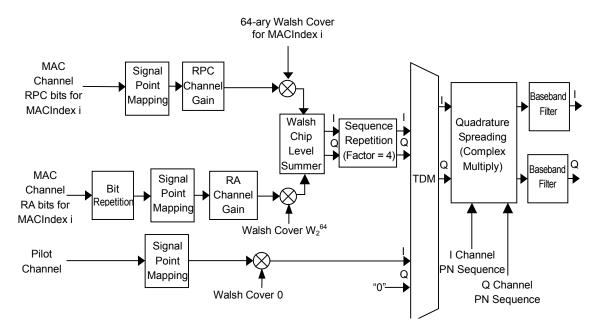


Figure 3.7.3-1 Signal generation block diagram of 1xEV-DO forward idle slot waveform pattern

Figure 3.7.3-2 shows the 1xEV-DO forward idle slot waveform pattern format, and Table 3.7.3-1 lists the MAC channel parameters for the 1xEV-DO forward idle slot waveform pattern.

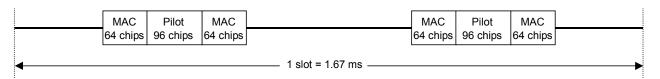


Figure 3.7.3-2 Format of 1xEV-DO forward idle slot waveform pattern

 Table 3.7.3-1
 List of MAC channel parameters for 1xEV-DO forward idle slot waveform pattern

MAC Index	RA Bit	RPC Bit	RA Channel Gain	RPC Channel Gain			
4 (RA Channel), 5 to 17 (RPC Channel)	Random	Random	-12.04 dB^*	−11.42 dB*			
*: Relative value to the pilot channel.							

3.8 WLAN Waveform Pattern

As the WLAN waveform pattern, waveform patterns that conform to IEEE802.11a/b/g are provided as shown in Table 3.8-1.

•								
Waveform Pattern Name	Data Rate (Mbits/s)	Modulation	Coding Rate	Coding Bits per Subcarrier	Coding Bits per OFDM Symbol	Data Bits per OFDM Symbol		
11a_OFDM_6Mbps	6	BPSK	1/2	1	48	24		
11a_OFDM_9Mbps	9	BPSK	3/4	1	48	36		
11a_OFDM_9Mbps_PN9 *1	9	BPSK	3/4	1	48	36		
11a_OFDM_12Mbps	12	QPSK	1/2	2	96	48		
11a_OFDM_18Mbps	18	QPSK	3/4	2	96	72		
11a_OFDM_18Mbps_PN9 *1	18	QPSK	3/4	2	96	72		
11a_OFDM_24Mbps	24	16-QAM	1/2	4	192	96		
11a_OFDM_36Mbps	36	16-QAM	3/4	4	192	144		
11a_OFDM_36Mbps_PN9 *1	36	16-QAM	3/4	4	192	144		
11a_OFDM_48Mbps	48	64-QAM	2/3	6	288	192		
11a_OFDM_54Mbps	54	64-QAM	3/4	6	288	216		
11a_OFDM_54Mbps_PN9 *1	54	64-QAM	3/4	6	288	216		
11a_OFDM_54Mbps_ACP *2	54	64-QAM	3/4	6	288	216		

 Table 3.8-1
 List of IEEE802.11a waveform patterns

- *1: Waveform pattern having continuous PN9 data. For the waveform patterns without *1 affixed, the PN9 data does not have continuity. A gap period of 4 samples is secured at the start of the waveform pattern, followed by a PLCP preamble. When using an external trigger, set the trigger delay to -4 samples to match the rising of the external trigger and the starting point of the PLCP preamble.
- *2: Waveform pattern having improved ACPR with spectrum sidelobes cut down.

Waveform Pattern Name	Spreading, Coding	Modulation
11b_DSSS_1Mbps	DSSS, 11 chip Barker Code	DBPSK
11b_DSSS_2Mbps	DSSS, 11 chip Barker Code	DQPSK
11b_DSSS_2Mbps_PN9*1	DSSS, 11 chip Barker Code	DQPSK
11b_CCK_5_5Mbps	ССК	DQPSK
11b_CCK_11Mbps	ССК	DQPSK
11b_CCK_11Mbps_PN9*1	ССК	DQPSK
11b_CCK_11Mbps_ACP*2	ССК	DQPSK

Table 3.8-2 List of IEEE802.11b waveform patterns

In the above waveform patterns, the ramp rises at the start of the waveform pattern. The frame clock also rises at the same timing. When using an external trigger, set the trigger delay to -88 samples to match the rising of the external trigger and the starting point of the PLCP preamble.

- *1: Waveform pattern having continuous PN9 data. For the waveform patterns without *1 affixed, the PN9 data does not have continuity.
- *2: Waveform pattern having improved ACPR with spectrum sidelobes cut down.

Waveform Pattern Name	Data rate (Mbits/s)	Modulation	Coding Rate	Coding Bits per Subcarrier	Coding Bits per OFDM Symbol	Data Bits per OFDM Symbol
11g_DSSS_OFDM_6Mbps	6	BPSK	1/2	1	48	24
11g_DSSS_OFDM_9Mbps	9	BPSK	3/4	1	48	36
11g_DSSS_OFDM_12Mbps	12	QPSK	1/2	2	96	48
11g_DSSS_OFDM_18Mbps	18	QPSK	3/4	2	96	72
11g_DSSS_OFDM_24Mbps	24	16-QAM	1/2	4	192	96
11g_DSSS_OFDM_36Mbps	36	16-QAM	3/4	4	192	144
11g_DSSS_OFDM_48Mbps	48	64-QAM	2/3	6	288	192
11g_DSSS_OFDM_54Mbps	54	64-QAM	3/4	6	288	216

Table 3.8-3 List of IEEE802.11g waveform patterns

In the above waveform patterns, the ramp rises at the start of the waveform pattern. The frame clock also rises at the same timing. When using an external trigger, set the trigger delay to -60 samples to match the rising of the external trigger and the starting point of the PLCP preamble.

When a WLAN waveform pattern is output, a marker signal shown in Table 3.8-4 is output from the AUX connector on the rear panel of the MG3700A.

Marker Signal	Output Data
Marker 1	Frame Clock
Marker 2	RF Gate
Marker 3	_
RMS for single phase of IQ	1157
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$

 Table 3.8-4
 Marker output data and IQ output level

3.8.1 IEEE802.11a

These waveform patterns conform to the MAC layer and physical layer standards described in IEEE802.11, IEEE802.11a.

Table 3.8.1-1 lists the parameters commonly used by each waveform pattern:

 Table 3.8.1-1
 List of common parameters

Parameter	Setting Value	
PSDU Length	1000 bytes	
PSDU Data	PN9fix or PN9 (Note)	
Sampling rate	40 MHz	

Note: PN9fix is PN9 data reset for each PSDU. Therefore, the PN data is not continuous between PSDUs. However, the waveform patterns whose name has _PN9 have the continued PN9 data.

Figure 3.8.1-1 shows the PPDU frame format.

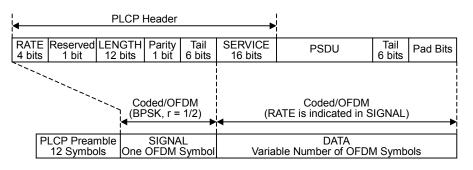


Figure 3.8.1-1 IEEE802.11a PPDU frame format

A MAC frame shown in Figure 3.8.1-2 below is applied to the PSDU field in the PPDU frame format. A MAC frame consists of the MAC header field and FSC field, as well as the transmission data indicated by Frame Body.

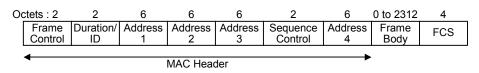


Figure 3.8.1-2 IEEE802.11a MAC frame format

The Frame Control field consists of the following bits with the corresponding data as shown in Table 3.8.1-2 below.

Field	Bit	Data
Protocol Version	B0 and B1	00
Туре	B2 and B3	01
Subtype	B4 to B7	0000
To DS	B8	0
From DS	B9	0
More Flag	B10	0
Retry	B11	0
Power Management	B12	00
More Data	B13	0
WEP	B14	0
Order	B15	0

Table 3.8.1-2 Contents of Frame Control field

Table 3.8.1-3 lists the data in a MAC header excluding the Frame Control field.

Data
0000 _H
FFFF FFFF FFFF _H (Note)
$0000 \ 0000 \ 0000_{\rm H}$
0000 0000 0000н
0000н
$0000\ 0000\ 0000_{\rm H}$

Table 3.8.1-3 Contents of MAC header excluding Frame Control field

Note:

For Address 1 (Destination Address in the Adhoc mode,) all "1" indicates broadcast address.

3.8.2 IEEE802.11b

These waveform patterns conform to the MAC layer and physical layer standards described in IEEE802.11, IEEE802.11b.

Table 3.8.2-1 lists the parameters commonly used by each waveform pattern:

Setting Value	
1024 bytes	
PN9fix or PN9 (Note)	
44 MHz	

Note: PN9fix is PN9 data reset for each PSDU. Therefore, the PN data is not continuous between PSDUs. However, the waveform patterns whose name has _PN9 have the continued PN9 data.

Figure 3.8.2-1 shows the Long PLCP PPDU frame format.

Scrambled One's 1 Mbit/s DBPSK SYNC SFD SIGNAL SERVICE LENGTH CRC 128 bits 16 bits 8 bits 8 bits 16 bits 16 bits PLCP Preamble PLCP HEADER PSDU 144 bits 48 bits 192 µs 1 DBPSK 2 DQPSK PPDU 5.5 or 11 Mbits/s

Figure 3.8.2-1 IEEE802.11b Long PLCP PPDU frame format

A MAC frame same with that described in Section 3.8.1 "IEEE802.11a" is applied to the PSDU field in the Long PLCP PPDU frame format.

3.8.3 IEEE802.11g

These waveform patterns conform to the physical layer standards described in IEEE802.11, IEEE802.11g.

Table 3.8.3-1 lists the parameters commonly used by each waveform pattern:

Table 3.8.3-1	List of common parameters
---------------	---------------------------

Parameter	Setting Value			
PSDU Length	1000 bytes			
PSDU Data	PN9fix (Note)			
Sampling rate 44 MHz				
Note:				
PN9fix is PN9 data reset for each PSDU. Therefore, the PN data is				
not continuous between PSDUs.				

Figure 3.8.3-1 shows the Long PLCP PPDU frame format.

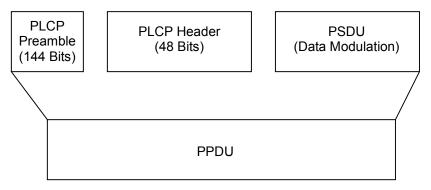
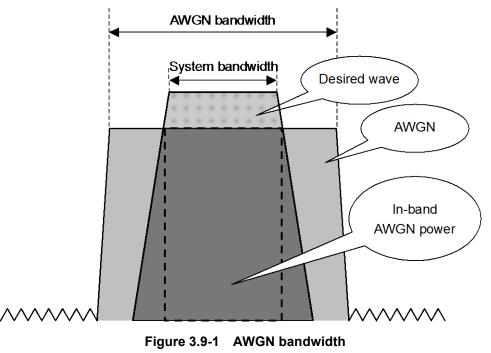


Figure 3.8.3-1 IEEE802.11b Long preamble PPDU frame format


3.9 AWGN Waveform Pattern

As the AWGN waveform pattern, waveform patterns shown in Table 3.9-1 are provided. AWGN signals can be generated with any sampling rate or bandwidth by using the AWGN Generator function of the MG3700A IQproducer.

Waveform Pattern Name	Max. Peak/RM S ratio	3-dB bandwidt h (MHz)	In-band power conversion ratio (dB)*	Application
AWGN_3_84MHz_x2	> 12 dB	7.68	3.01	Added with a W-CDMA UL signal to perform dynamic range measurement.
AWGN_3_84MHz_x1_5	> 12 dB	5.76	1.76	Added with a W-CDMA UL signal to perform dynamic range measurement.
AWGN_1.23MHz_x2	> 12 dB	2.46	3.01	Added with a CDMA2000 1x Reverse signal to perform dynamic range measurement.
AWGN_1.23MHz_x1_5	> 12 dB	3.69	1.76	Added with a CDMA2000 1x Reverse signal to perform dynamic range measurement.

Table 3.9-1 List of AWGN waveform patterns

*: The in-band power conversion ratio is the ratio of the power within the system bandwidth for each communication system to the total power of MG3700A outputs measured by a power meter, etc. as shown in Figure 3.9-1 below.

3.10 Digital Broadcast Waveform Pattern

The Digital Broadcast waveform patterns shown in Table 3.10-1 are provided.

Waveform Pattern Name	Parameter	Application
BS_1ch	Roll-off factor: 0.35 Nyquist Bandwidth: 28.86 MHz Modulation: QPSK	Physical layer waveform pattern of digital BS broadcast for device evaluation.
CS_1ch	Roll-off factor: 0.35 Nyquist Bandwidth: 21.096 MHz Modulation: QPSK	Physical layer waveform pattern of digital CS broadcast for device evaluation.
CATV_AnnexC_1ch	Roll-off factor: 0.13 Nyquist Bandwidth: 5.274 MHz Modulation: 64QAM	Physical layer waveform pattern of CATV (ITU-T J83 Annex C) for device evaluation.
ISDBT_1layer_1ch	Mode: 3, GI: 1/8 A-Layer:13seg, 64QAM	Physical layer waveform pattern of ISDB-T for device evaluation.
ISDBT_2layer_1ch	Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK B-Layer: 12seg, 64QAM	Physical layer waveform pattern of ISDB-T for device evaluation.
ISDBT_2layer_Movie	Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR = 2/3, TI = 2 B-Layer: 12seg, 64QAM, CR = 7/8, TI = 2	Waveform pattern for ISDB-T partial reception, mainly used for evaluation of image and
ISDBT_2layer_Movie2	Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR = 2/3, TI = 4 B-Layer: 12seg, 64QAM, CR = 3/4, TI = 2	voice data of terminals. The waveform length is 40 frames.*
ISDBT_2layer_Coded	Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR = 2/3, TI = 2 B-Layer: 12seg, 64QAM, CR = 7/8, TI = 2	Waveform pattern for ISDB-T partial reception, mainly used for simple BER measurement. The waveform length is 4 frames.
ISDBT_QPSK_1_2	Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR = 1/2, TI = 0 B-Layer: 12seg, 64QAM, CR = 7/8, TI = 1	Waveform pattern for ISDB-T partial reception, mainly used for simple BER measurement.
ISDBT_QPSK_2_3	Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR = 2/3, TI = 0 B-Layer: 12seg, 64QAM, CR = 7/8, TI =1	The waveform length is 4 frames.
ISDBT_16QAM_1_2	Mode: 3, GI: 1/8 A-Layer: 1seg, 16QAM, CR = 1/2, TI = 0 B-Layer: 12seg, 64QAM, CR = 7/8, TI = 1	
ISDBT_QPSK_2_3_TI4	Mode: 3, GI: 1/8 A-Layer: 1seg, QPSK, CR = 2/3, TI = 4 B-Layer: 12seg, 64QAM, CR = 3/4, TI = 2	

Table 3.10-1	List of Digital Broadcast waveform patterns
--------------	---

Waveform Pattern Name		Parameter	Application
	Seg#1 to #5:	8-segment concatenation transmission in 1-segment format	Mainly used for evaluation of image and voice data of terminals. The waveform
ISDBTsb_Movie	Seg#6 to #8:	8-segment concatenation transmission in 3-segment format	length is 68 frames.*
	Mode: 3, GI:	1/8	
		SK, $CR = 1/2$, $TI = 4$	
	B-Layer: QP	SK, $CR = 1/2$, $TI = 4$	
	Seg#1 to #5:	8-segment concatenation transmission in 1-segment format	Mainly used for simple BER measurement. The waveform length is 4 frames.
ISDBTsb_QPSK_1_2	Seg#6 to #8:	8-segment concatenation transmission in 3-segment format	
	Mode: 3, GI:	1/8	
	A-Layer: QP	SK, $CR = 1/2$, $TI = 0$	
		SK, $CR = 1/2$, $TI = 0$	
	Seg#1 to #5:	8-segment concatenation transmission in 1-segment format	
ISDBTsb_QPSK_2_3	Seg#6 to #8:	8-segment concatenation transmission in 3-segment format	
	Mode: 3, GI:	1/8	
	A-Layer: QP	SK, $CR = 2/3$, $TI = 0$	
	B-Layer: QP	SK, $CR = 2/3$, $TI = 0$	
	Seg#1 to #5:	8-segment concatenation transmission in 1-segment format	
ISDBTsb_16QAM_1_2	Seg#6 to #8:	8-segment concatenation transmission in 3-segment format	
	Mode: 3, GI:		
	•	AM, CR = 1/2, TI = 0	
	B-Layer 166	QAM, CR = 1/2, TI = 0	

Table 3.10-1	List of Digital	Broadcast wavef	form patterns	(Cont'd)
--------------	-----------------	-----------------	---------------	----------

*: It is not guaranteed that any receiver can receive a waveform with this length.

Table 3.10-2 lists the parameters commonly used by each waveform pattern.

Parameter	Setting Value
Data	PN23fix*: (digital BS, digital CS, CATV, ISDB-T)
	digital BS: 144.3 Msps
	digital CS: 147.62 Msps
Sampling rate	CATV: 42.192 Msps
	ISDB-T: 16.253968 Msps
	ISDB-Tsb: 8.12698417 Msps
RMS for single phase of IQ	1157
IQ output level	$\sqrt{I^2 + Q^2} = 320 \text{ mV}$

Table 3.10-2 List of common parameters

*: PN sequence is discontinuous at the connection of the waveform pattern.

3.10.1 Frame configuration

BS_1ch, CS_1ch, CATV_AnnexC_1ch

Digital BS, digital CS and CATV waveform patterns have no-frame structure as follows.

PN23fix

ISDBT_1layer_1ch, ISDBT_2layer_1ch, ISDBT_QPSK_1_2, ISDBT_QPSK_2_3, ISDBT_16QAM_1_2, ISDBT_QPSK_2_3_TI4 ISDB-T waveform patterns are created as follows.

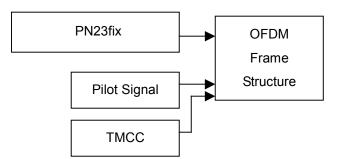


Figure 3.10.1-2 Generation of the waveform patterns for ISDB-T

ISDBT_2layer_Movie, ISDBT_2layer_Movie2, ISDBT_2layer_Coded ISDB-T waveform patterns are created as follows.

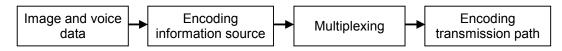


Figure 3.10.1-3 Generation of the waveform patterns for ISDB-T

Table 3.10.1-1 lists the parameters used for encoding the transmission paths of ISDBT_2layer_Movie and ISDBT_2layer_Coded waveform patterns.

Table 3.10.1-2 lists the parameters used for encoding the transmission paths of an ISDBT_2layer_Movie2 waveform pattern.

Image and voice data of receivers for partial reception can be evaluated with ISDBT_2layer_Movie and ISDBT_2layer_Movie2 waveform patterns.

Simple BER measurement can be performed for receivers for partial reception with an ISDBT_2layer_Coded waveform pattern.

Note that the contents in Layers A and B of ISDBT_2layer_Movie waveform patterns, those of ISDBT_2layer_Movie2 waveform patterns, and those of ISDBT_2layer_Coded waveform patterns are different.

 Table 3.10.1-1
 List of transmission path encoding parameters

 for ISDBT_2layer_Movie and ISDBT_2layer_Coded waveform patterns

Parameter	Layer A Layer B			
Mode	Mo	de3		
Guard interval	1.	/8		
Partial reception	ON			
Emergency flag	OFF			
Segment count	1 12			
Modulation	QPSK 64QAM			
Encoding rate	2/3 7/8			
Time interleave	2	2		

Table 3.10.1-2 List of transmission path encoding parameters for ISDBT_2layer_Movie2 waveform pattern

Parameter	Layer A Layer B			
Mode	Mo	de3		
Guard interval	1.	/8		
Partial reception	ON			
Emergency flag	OFF			
Segment count	1 12			
Modulation	QPSK 64QAM			
Encoding rate	2/3 3/4			
Time interleave	4	2		

Table 3.10.1-3 lists the parameters used for encoding the transmission paths for each segment of ISDBTsb_Movie waveform patterns. Signals in 1-segment format or signals in 3-segment format are concatenated into 8 segments in a layout shown in Table 3.10.1-3 and transmitted.

Parameter	Seg#1	eg#1 Seg#2 Seg#3 Seg#4 Seg#5 Seg#6 to			6 to #8		
Layer	Layer A	Layer A	Layer A	Layer A	Layer A	Layer A	Layer B
Mode	Mode3						
Guard interval		1/8					
Partial reception	OFF	OFF	OFF	OFF	OFF	ON	OFF
Emergency flag	OFF	OFF	OFF	OFF	OFF	OFF	OFF
Modulation	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Encoding rate	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Time interleave	4	4	4	4	4	4	4
Subchannel No. in the center of segment	5	8	11	14	17	20/23/26	

Table 3.10.1-3	List of transmission path encoding parameters
for	ISDBTsb_Movie waveform patterns

An ISDBTsb_Movie waveform pattern contains image and voice data that are multiplexed, re-multiplexed, and encoded. Table 3.10.1-4 lists the multiplexed parameters. Images and voices of the receiver can be evaluated using such a waveform pattern. When receiving an RF signal, set the output frequency of the MG3700A to 190.21428571 MHz.

Parameter	Seg#1	Seg#2	Seg#3	Seg#4	Seg#5	Seg#6 to 8
service_id	0x2600	0x2608	0x2610	0x2618	0x2620	0x2630
network_id	0x8090	0x8091	0x8092	0x8093	0x8094	0x8096
transport_stream_id	0x8090	0x8091	0x8092	0x8093	0x8094	0x8096
remote_control_key_id	0x5B	0x5C	0x5D	0x5E	0x5F	0x60
frequency	0x529	0x52C	0x52F	0x532	0x535	0x538
connected_transmission_ group_id	0x2401	0x2401	0x2401	0x2401	0x2401	0x2401

Table 3.10.1-4 PSI/SI information of ISDBTsb_Movie waveform pattern

3.11 Bluetooth[®] Waveform Pattern

The *Bluetooth* waveform patterns shown in Table 3.11-1 are provided.

Waveform Pattern Name	Data rate (Mbits/s)	Modulation for Payload	Filter	Packet Type	Dirty, FM* ⁸
DH1*1	1	$GFSK^{*4}$	Gaussian*5	DH1	-
DH3*1	1	GFSK*4	Gaussian*5	DH3	-
DH5*1	1	GFSK*4	Gaussian*5	DH5	-
$DH3_3SlotOff^{*1}$	1	$GFSK^{*4}$	Gaussian*5	DH3	-
DH5_5SlotOff*1	1	GFSK*4	Gaussian*5	DH5	-
POLL	1	$GFSK^{*4}$	Gaussian*5	POLL	-
2-DH1*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH1	-
2-DH3*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH3	-
2-DH5*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH5	-
2-DH3_3SlotOff*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH3	-
2-DH5_5SlotOff*1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH5	-
3-DH1*1	3	8-DPSK	Root Nyquist*6	3-DH1	-
3-DH3*1	3	8-DPSK	Root Nyquist*6	3-DH3	-
3-DH5*1	3	8-DPSK	Root Nyquist*6	$3\text{-}\mathrm{DH5}$	-
3-DH3_3SlotOff*1	3	8-DPSK	Root Nyquist*6	3-DH3	-
3 -DH5_5SlotOff*1	3	8-DPSK	Root Nyquist*6	$3\text{-}\mathrm{DH5}$	-
GFSK-PN9*2	1	$GFSK^{*4}$	Gaussian*5	No packet format	-
GFSK-PN15*3	1	$GFSK^{*4}$	Gaussian*5	No packet format	-
PI_4_DQPSK-PN9*2	2	$\pi/4$ -DQPSK	Root Nyquist*6	No packet format	-
PI_4_DQPSK-PN15*3	2	$\pi/4$ -DQPSK	Root Nyquist*6	No packet format	-
8DPSK-PN9*2	3	8DPSK	Root Nyquist*6 No packet format		-
8DPSK-PN15*3	3	8DPSK	Root Nyquist*6	No packet format	-

 Table 3.11-1
 List of *Bluetooth* waveform patterns (1/2)

Section 3 Details of Standard	Waveform Pattern
-------------------------------	------------------

				· · ·	
Waveform Pattern Name	Data rate (Mbits/s)	FIITA		Packet Type	Dirty, FM* ⁸
DH1_dirty*1	1	$GFSK^{*4}$	Gaussian*5	DH1	Dirty
DH3_dirty *1	1	GFSK*4	Gaussian*5	DH3	Dirty
$DH5_dirty*_1$	1	$GFSK^{*4}$	Gaussian*5	DH5	Dirty
$2\text{-DH1}_dirty *_1$	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH1	Dirty
2-DH3_dirty *1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH3	Dirty
2-DH5_dirty *1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH5	Dirty
3-DH1_dirty *1	3	8-DPSK	Root Nyquist*6	3-DH1	Dirty
3-DH3_dirty *1	3	8-DPSK	Root Nyquist*6	3-DH3	Dirty
3-DH5_dirty *1	3	8-DPSK	Root Nyquist*6	3-DH5	Dirty
$DH1_Dirty_withFM^{*1}$	1	$GFSK^{*4}$	Gaussian*5	DH1	Dirty, FM
DH3_Dirty_withFM*1	1	$GFSK^{*4}$	Gaussian*5	DH3	Dirty, FM
DH5_Dirty_withFM*1	1	GFSK*4	Gaussian*5	DH5	Dirty, FM
2-DH1_Dirty_withFM *1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH1	Dirty, FM
2-DH3_Dirty_withFM *1	2	$\pi/4$ -DQPSK	Root Nyquist*6	2-DH3	Dirty, FM
$2\text{-DH5}_Dirty_withFM *1$	2	$\pi/4$ -DQPSK	Root Nyquist*6	$2\text{-}\mathrm{DH5}$	Dirty, FM
3 -DH1_Dirty_withFM * 1	3	8-DPSK	Root Nyquist*6	3-DH1	Dirty, FM
3-DH3_Dirty_withFM *1	3	8-DPSK	Root Nyquist*6	3-DH3	Dirty, FM
3-DH5_Dirty_withFM *1	3	8-DPSK	Root Nyquist*6	3-DH5	Dirty, FM
BLE*1	1	GFSK*9	Gaussian*5	BLE Reference Signal	-
BLE_dirty*1	1	GFSK*9	Gaussian*5	BLE Reference Signal	Dirty
BLE_Dirty_withFM*1	1	GFSK*9	Gaussian*5	BLE Reference Signal	Dirty, FM
BLE_CRC_corrupted*1,*7	1	GFSK*9	Gaussian*5	BLE Reference Signal	-
GFSK-PN15_BLE*3	1	GFSK*9	Gaussian*5	No packet format	-

Table 3.11-1 List of *Bluetooth* waveform patterns (2/2)

- *1: PN9 data is inserted into the payload body.
- *2: PN9 data is inserted to all areas that do not have a packet format.
- *3: PN15 data is inserted to all areas that do not have a packet format.
- *4: Modulation index = 0.32
- *5: Bandwidth time (BT) = 0.5
- *6: Roll-off rate $\beta = 0.4$
- *7: Use in RF-PHY.TS/4.0.0 RCV-LE/CA/07/C (PER Report Integrity) with intentional CRC errors in every other packet is assumed.
- *8: Refer to Section 3.11.4.
- *9: Modulation index = 0.5

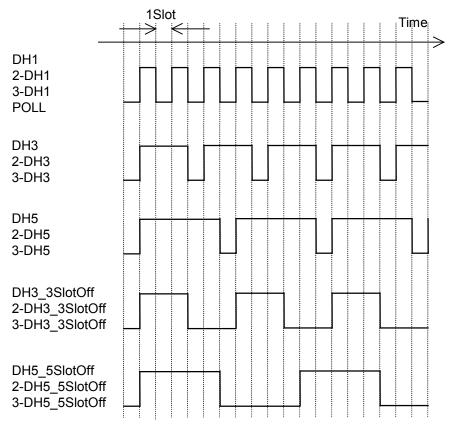


Figure 3.11-1 below shows the timing chart of waveform patterns that have a packet format.

Figure 3.11-1 Timing chart of waveform patterns

When a *Bluetooth* waveform pattern that has a packet configuration is output, a marker signal shown in Table 3.11-2 is output from the AUX I/O connector on the rear panel of the MG3700A.

Table 3.11-2 Marker output data and IQ output level

Marker Signal	Output Data
Marker 1	Packet Clock
Marker 2	RF Gate
Marker 3	_
RMS for single phase of IQ	1634 (1157 for Dirty and BLE waveform patterns)
IQ output level	$\sqrt{I^2 + Q^2}$ = 453 mV (320 mV for Dirty
	and BLE waveform patterns)

3.11.1 Packet configuration for Basic Rate (BR)

When a waveform pattern of DH1, DH3, DH5, DH3_3SlotOff, or DH5_5SlotOff is selected, the data is output in the format shown in Figure 3.11.1-1 below. Table 3.11.1-1 shows the payload body data length for each file.

LS	SB			MSB
	ACCESS CODE 68 bits	HEADER 54 bits	PAYLOAD	
	<	(GFSK	\rightarrow

Figure 3.11.1-1 Packet configuration for Basic Rate waveform

Packet Type	Payload Body (Bytes)
DH1	27
DH3	183
DH5	339
POLL	None

3.11.1.1 ACCESS CODE

The following figure shows the configuration of the ACCESS CODE. For Sync Word (SW), a value that is obtained according to the Sync Word Definition, which is prescribed in section 6.3.3 of BLUETOOTH SPECIFICATION Version 2.0 + EDR[vol3], is assigned with LAP = 9E8B33_H. For Preamble and Trailer, a value that is determined by the Sync Word value and the specifications in section 6.3.2 (for Preamble) or 6.3.4 (for Trailer) of the above specifications is assigned respectively.

ACCESS CODE

Р	SW		Т	
	P: SW: T:	Preamble Sync Word Trailer	5 _H (4 bits) 475C58CC733 A _H (4 bits)	45E72 _H (64 bits)

3.11.1.2 Packet Header

The following figure shows the configuration of the Packet Header. For HEC, a value that is obtained according to the HEC generation specifications, which are prescribed in section 7.1.1 of BLUETOOTH SPECIFICATION Version 2.0 + EDR[vol3], is assigned. 18-bit HEC data is then converted to 54-bit data, according to FEC: RATE 1/3, which is prescribed in section 7.4 of BLUETOOTH SPECIFICATION Version 2.0 + EDR[vol3].

Packet Header

LT_ADDR	TYPE	FLOW	ARQN		SEQN	HEC
	LT FLO ARG SEQ HEO	QN: Ackı QN: Sequ	cal transpor v control nowledge ind tence numbe der error che	lication er	0 _H (3 bits) 1 _H (1 bit) 1 _H (1 bit) Alternate of 1 _H (18 bits)	$_{ m H}$ and $0_{ m H}$ (1 bit)

Table 3.11.1.2-1 Type code (TYPE) for BR output signal

Packet Type	Type Code
DH1	$4_{ m H}$
DH3	$B_{\rm H}$
DH5	F_{H}

3.11.1.3 Payload

The following figure shows the configuration of the Payload. For CRC, a value that is obtained according to the CRC generation specifications, which are prescribed in section 7.1.2 of BLUETOOTH SPECIFICATION Version 2.0 + EDR[vol3], is assigned with UAP = 00_{H} .

Payload

LLID	FLOW	LENGTH	UNDEFINED	PAYLO	AD BODY	CRC
		LLID: FLOW:	Logical link indication Flow indication		$2_{ m H} (2 ext{ bits}) \\ 1_{ m H} (1 ext{ bit})$	
		11011	payload length indicator		See Table 3.11.	1.3-1 below.

Table 3.11.1.3-1 LENGTH for BR

Packet Type	Data Length	Value
DH1	5 bits	27
DH3	9 bits	183
DH5	9 bits	339

3.11.2 Packet configuration for Enhanced Data Rate (EDR)

When a waveform pattern of 2-DH1, 2-DH3, 2-DH5, 3-DH1, 3-DH3, 3-DH5, 2-DH3_3SlotOff, 2-DH5_5SlotOff, 3-DH3_3SlotOff, or 3-DH5_5SlotOff is selected, the data is output in the format shown in Figure 3.11.2-1 below. Table 3.11.2-1 shows the payload body data length for each file.

LS	SB					MSB
	ACCESS CODE 68 bits	HEADER 54 bits	GUARD	SYNC	PAYLOAD	TRAILER
	< GF	SK>	•	<	DPSK	\rightarrow

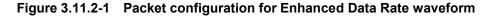


Table 3.11.2-1 Data length of payload body for EDR

Packet Type	Payload Body (Bytes)
2-DH1	54
2-DH3	367
2-DH5	679
3-DH1	83
3-DH3	552
3-DH5	1021

3.11.2.1 ACCESS CODE

The configuration of the ACCESS CODE is the same as that shown in Section 3.11.1.1.

3.11.2.2 Packet Header

The configuration of the Packet Header is the same as that shown in Section 3.11.1.2. Table 3.11.2.2-1 shows the values to be assigned for TYPE (type code).

Table 3.11.2.2-1	Type code (TYPE) for EDR output signal
------------------	--

Packet Type	Type Code
2-DH1	$4_{ m H}$
2-DH3	Вн
2-DH5	F_{H}
3-DH1	$4_{ m H}$
3-DH3	Вн
3-DH5	$\mathbf{F}_{\mathbf{H}}$

3.11.2.3 Payload

The configuration of the Payload is the same as that shown in Section 3.11.1.3. Table 3.11.2.3-1 shows the data lengths and setting values for LENGTH.

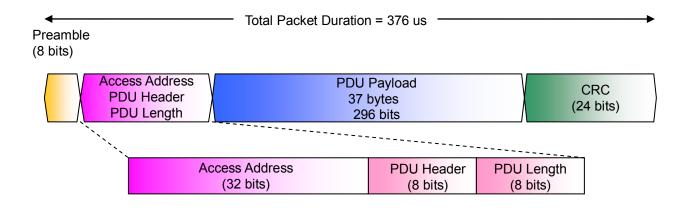
Packet Type	Data Length	Value
2-DH1	5 bits	54
2-DH3	10 bits	366
2-DH5	10 bits	678
3-DH1	5 bits	81
3-DH3	10 bits	549
3-DH5	10 bits	1017

Table 3.11.2.3-1 LENGTH for EDR

3.11.2.4 Synchronous Sequence

The following value is assigned for Synchronous Sequence (SYNC) in each EDR packet. The phase is initialized to 0 rad by setting 0 to the head of Synchronous Sequence.

For 2-DH1, 2-DH3, and 2-DH5 packets: 0777D5_H (22 bits) For 3-DH1, 3-DH3, and 3-DH5 packets: 0175D7E92_H (33 bits)


3.11.2.5 Trailer

The following value is assigned for Trailer (TRAILER) in each EDR packet.

For 2-DH1, 2-DH3, and 2-DH5 packets: 0_H (4 bits) For 3-DH1, 3-DH3, and 3-DH5 packets: 00_H (6 bits)

3.11.3 Packet configuration for BLE

When waveform patterns of BLE, BLE_dirty, BLE_Dirty_withFM, and BLE_CRC_corrupted of Bluetooth Low Energy (BLE) waveform pattern are selected, the data is output in the format shown in Figure 3.11.3-1. Table 3.11.3-1 shows the payload body data length. The Packet Interval is 1.25 ms.

Figure 3.11.3-1 Packet Configuration for BLE Waveform

Packet type	Payload Body (bytes)	
BLE Reference Signal	37	

3.11.3.1 Preamble

Preamble is 8 bits of either one of 10101010 or 01010101 depending on LSB of Access Address as specified in Section 2.1.1, BLUETOOTH SPECIFICATION Version 4.0 [vol 6].Because Access Address of BLE,BLE_dirty, BLE_Dirty_withFM, and BLE_CRC_corrupted is 0x94826E8E _H, when LSB of Access Address is 1, the preamble is "10101010" (In this case, the first bit is assumed to be LSB due to the transmission order).

When LSB of Access Address is 1:10101010b (8 bits) When LSB of Access Address is 0:01010101b (8 bits)

3.11.3.2 Access Address

Access Address is a bit string of 32 bits as specified in Section 2.1.2, BLUETOOTH SPECIFICATION Version 4.0 [vol 6].Access Address of BLE, BLE_dirty, BLE_Dirty_withFM, and BLE_CRC_corrupted is 0x94826E8E_H.

3.11.3.3 PDU Header, PDU Length

PDU Header and PDU Length are bit strings of 8 bits as specified in Section 2.4, BLUETOOTH SPECIFICATION Version 4.0 [vol 6] and Section 7.2.4, RF-PHY.TS/4.0.0 respectively.

Payload Type (4 bits) '0000'	'0000'	Payload Length in octets (6 bits) '100101'	'00'
PDU H	Header		PDU
			Length

3.11.3.4 PDU Payload, CRC

PDU Payload is payload data of 6 to 37 bytes as specified in Section 2.4, BLUETOOTH SPECIFICATION Version 4.0 [vol 6].Payload data of BLE, BLE_dirty, BLE_Dirty_withFM, and BLE_CRC_corrupted is 37 bytes. In addition, CRC is 3 bytes.

3.11.4 Dirty Transmitter Signal

Dirty Transmitter Signal is specified as a signal used for a reception test in Section 5.1.18, Bluetooth Test Specification v1.2/2.0/2.0 + EDR/2.1/2.1 + EDR/3.0/3.0 + HS and Section 6.3.1, RF-PHY.TS/4.0.0. This Dirty Transmitter Signal changes the frequency offset, modulation index, and symbol timing error with every 50 packets. 10 combinations of these three parameters are specified, and outputs of Test Run 1 to 10 are repeated. Furthermore, the frequency drift of output signals is specified for the Dirty Transmitter Signal. The waveform patterns "Dirty" in Table 3.11-1 are waveform patterns with the addition of the frequency offset, modulation index fluctuation, and symbol timing error. In addition, the waveform patterns "Dirty, FM" are signals with the addition of the frequency offset, modulation index fluctuation, symbol timing error, and frequency drift.

The *Bluetooth* word mark and logo are owned by Bluetooth SIG, Inc. and Anritsu uses this mark based on the license. Other trademarks and trade names shall belong to individual owners.

3.12 GPS Waveform Pattern

The GPS waveform patterns shown in Table 3.12-1 are provided.

Waveform Pattern Name	Main Usage	Outline of Data
SYNC_ADJ*1	Synchronization adjustment* ²	Consists of TLM, HOW, and default navigation data, formatted according to the subframe configuration that is prescribed in GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION. One period is configured with 1 subframe.
TLM*3	Sensitivity test	Consists of TLM, HOW, and default navigation data, formatted according to the subframe configuration that is prescribed in GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION.
PN9	BER measurement	Consecutive PN9 data, not configured in a subframe format
PARITY	Parity detection	Configured in the Word format that is prescribed in GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION. One Word consists of 24-bit PN9fix data and 6-bit parity bit data.
TLM_PARITY	Sensitivity test	Consists of TLM, HOW, and Nav Data, formatted according to the subframe configuration that is prescribed in GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION. Random data is inserted into the Nav Data part of Word3 to Word10. One period is configured with 5 subframes.
Data0, Data1, Data10, Data1C	Synchronization adjustment	Used in combination with SYNC_ADJ. These waveform patterns are automatically loaded into the memory when SYNC_ADJ is loaded into the memory. Users do not have to perform loading and selecting of these waveform patterns, because these waveform patterns are automatically selected when SYNC_ADJ is selected.

*1: When using SYNC_ADJ, press the Baseband key on the MG3700A and set Pattern Combination to Defined. Refer to the MG3700A Vector Signal Generator Operation Manual (Mainframe) for details on how to configure the settings.

*2: The repeatability of the subframe output timing of RF output against an external start trigger input is reduced to 10 ns or less.

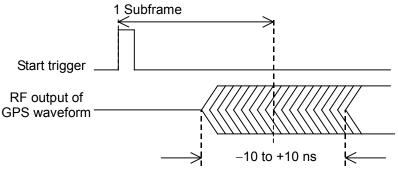


Figure 3.12-1 SYNC_ADJ output timing

*3: When executing a Doppler test, change the RF frequency and sampling clock at the same rate.

The sampling clock when the Doppler frequency is 0 Hz is 4.092 MHz. For example, when applying a +4-kHz Doppler frequency, the following expression establishes (providing the sampling clock as "CLK"):

(1575.42 MHz + 4 kHz)/1575.42 MHz = CLK/4.092 MHz then;

 $\mathrm{CLK}=4.09201039~\mathrm{MHz}$

Refer to the MG3700A Operation Manual (Mainframe) for RF frequency and sampling clock settings.

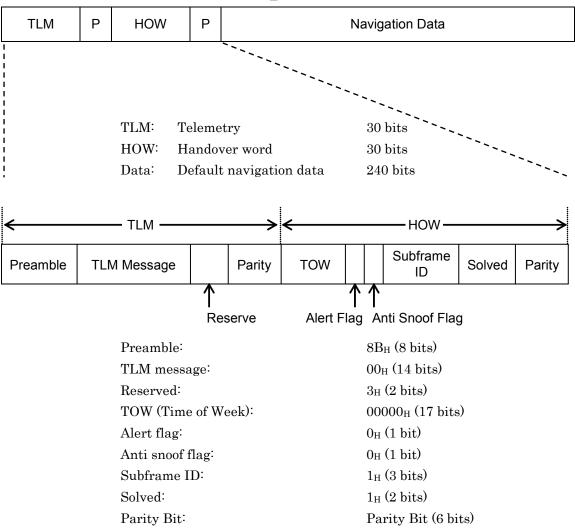
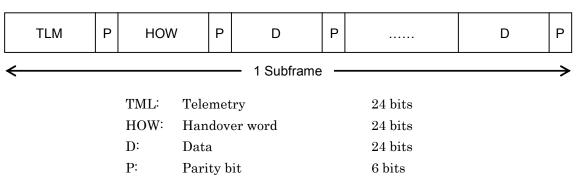

When a TLM or PARITY waveform pattern is output, a marker signal shown in Table 3.12-2 is output from the AUX I/O connector on the rear panel of the MG3700A.

Table 5.12-2 Marker output data and re output level				
Marker Signal	Output Data			
Marker 1	Packet Clock			
Marker 2	RF Gate			
Marker 3	_			
RMS for single phase of IQ	1634			
IQ output level	$\sqrt{I^2 + Q^2} = 453 \text{ mV}$			

Table 3.12-2 Marker output data and IQ output level

3.12.1 Waveform format

The following figures show the formats of the waveforms listed in Table 3.12-1 above. Each data is spread by the C/A code with Satellite ID Number 1. See Figure 3.12.1-1 for the C/A code generation.



SYNC_ADJ, TLM

PN9							
PN9							
PARITY							
D	Р	D		Р		D	Р
← 1 Word ←	\rightarrow	D:	Data		- 10 Word - 24 bits		\rightarrow
		Ъ:	Pari	ty bi	6 bits		

PN9fix data is allocated to the Data part. Adjacent Word PN data is contiguous but the PN data is discontiguous at the 10th Word and the 1st Word of the next cycle.

Random data is assigned to Data parts.

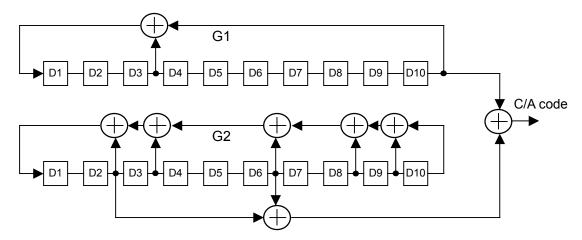


Figure 3.12.1-1 C/A code generation

Index

Numeric

1xEV-DO forward (excluding FWD_Idle) 3.7.11xEV-DO forward idle slot 3.7.31xEV-DO reverse 3.7.21xRTT Forward RC1, 2 (FWD RC1-2 9channel) 3.6.71xRTT Forward RC3, 4, 5 (FWD_RC3-5 9channel) 3.6.8 1xRTT Reverse RC1 (RVS_RC1_FCH) 3.6.11xRTT Reverse RC2 (RVS_RC2_FCH) 3.6.21xRTT Reverse RC3 (1) (RVS RC3 FCH) 3.6.31xRTT Reverse RC3 (2) (RVS_RC3_FCH_SCH) 3.6.41xRTT Reverse RC3 (3) (RVS_RC3_DCCH) 3.6.51xRTT Reverse RC4 (RVS RC4 FCH) 3.6.6

Digital broadcast waveform pattern 3.10 Details of each GSM waveform pattern 3.5.1 Details of standard waveform pattern Section 3

F

Frame configuration	3.2.1,	3.3.1,	3.4.1,
	3.5.2		

G

GPS waveform pattern	3.12
GSM waveform pattern	3.5

Η

How to use standard waveform pattern 2.1

Α

AWGN waveform pattern 3.9

В

Bluetooth waveform pattern 3.11

С

CDMA2000 1X waveform pattern 3.6 CDMA2000 1xEV-DO waveform pattern 3.7

D

$DL_AMR_TFCSx/DL_ISDN/DL_384kbps_Packet$				
	3.1.5			
DL_Interferer	3.1.6			
DL_RMCxxxkbps	3.1.4			

I

IEEE802.11a	3.8.1
IEEE802.11b	3.8.2
IEEE802.11g	3.8.3

0

OutlineSection 1Outline of product1.1

Ρ

PDC PACKET waveform pattern 3.3 PDC waveform pattern 3.2 PHS waveform pattern 3.4

S

Slot configuration 3.2.2, 3.3.2, 3.4.2, 3.5.3

Index

т

TestModel_5_xDPCH	3.1.8
TestModel_5_xHSPDSCH	3.1.9
TestModel_6_xHSPDSCH	3.1.10
TestModel_x_xxDPCH	3.1.7

U

UL_AMR_TFCSx/UL_ISDN/U	JL_384kbps_Packet
	3.1.5
UL_AMR_TFCSx/UL_ISDN/UL_64kbps_Packet	
	3.1.2
UL_Interferer	3.1.3
UL_RMCxxxkbps	3.1.1
W-CDMA waveform pattern	3.1
W-LAN waveform pattern	3.8